Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x+y)2016+2017.|y-2|=0
Mà \(\left(x+y\right)^{2016}\ge0\forall x,y;2017.\left|y-2\right|\ge0\forall y\)
=> (x+y)2016=2017.|y-2|=0
=> x+y= y-2=0 => y=2;x=-2
Dễ thấy VT >= 0 [ vì 3.(x-2y-1)^2018 và 4|x+5|^19 đều >= 0 ]
Dấu "=" xảy ra <=> x-2y-1=0 và x+5=0 <=> x=-5 và y=-3
Vậy x=-5 và y=-3
Tk mk nha
a, Vì |2x+8| và |3y-9x| đều >= 0
=> |2x+8| + |3y-9x| >= 0
Dấu "=" xảy ra <=> 2x+8=0 và 3y-9x=0 <=> x=-4 và y=-12
Vậy x=-4 và y=-12
Tk mk nha
a) x^2(3-x)=0
=> TH1 : x^2 =0 => x=0
TH2 : 3-x=0 => x= 3-0=3
Vậy x=0; x=3
b) x(x-4) <0
=> TH1 : x<0
TH2 : x-4< 0 => x<4
Vậy x< 0 thì thỏa mãn yêu cầu
1a) (x - 2)2 - 9 = 7
=> (x - 2)2 = 7 + 9
=> (x - 2)2 = 16
=> (x - 2)2 = 42
=> \(\orbr{\begin{cases}x-2=4\\x-2=-4\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)
Vậy ...
1b) |x - 2| - 9 = 7
=> |x - 2| = 7 + 9
=> |x - 2| = 16
=> \(\orbr{\begin{cases}x-2=16\\x-2=-16\end{cases}}\)
=> \(\orbr{\begin{cases}x=18\\x=-14\end{cases}}\)
Vì : 7.|x-y|^9+9.|x+2|^7 đều >= 0
=> VT >= 0 = VP
Dấu "=" xảy ra <=> x-y=0 và x+2=0 <=> x=y=-2
Vậy x=y=-2
Tk mk nha