Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,5n-1⋮3n-7\)
\(15n-3⋮3n-7\)
\(5\left(3n-7\right)+32⋮3n-7\)
\(\Rightarrow32⋮3n-7\)
\(\Rightarrow3n-7\)là ước của \(32\)
\(\Rightarrow3n-7\in\left\{-32;-16;-8;-4;-2;-1;1;2;4;8;16;32\right\}\)
\(\Rightarrow3n\in\left\{-25;-9;-1;3;5;6;8;9;11;15;23;39\right\}\)
\(\Rightarrow n\in\left\{-3;1;2;3;5;13\right\}\left(n\in Z\right)\)
\(b,7n+3⋮2n+5\)
\(14n+6⋮2n+5\)
\(7\left(2n+5\right)-29⋮2n+5\)
\(\Rightarrow29⋮2n+5\)
\(\Rightarrow2n+5\in\left\{-29;-1;1;29\right\}\)
\(\Rightarrow2n\in\left\{-34;-6;-4;24\right\}\)
\(\Rightarrow n\in\left\{-17;-3;-2;12\right\}\)
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
a) 2n+1 và 7n+2
Gọi d là ƯCLN của 2n+1 và 7n+2
Vì 2n+1 chia hết cho d,7n+2 chia hết cho d
TC: 7.(2n+1) chia hết cho d , 2.(7n+2) chia hết cho d
14n+7 chia hết cho d , 14n+14 chia hết cho d
Nên (14n+14)-(14n+7) chia hết cho d
14n+14-14n+7 chia hết cho d
7 chia hết cho d
d=7
Kết luận
Các câu khác tương tự nhé
a) ĐKXĐ: \(n\ne3\)
Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(\Leftrightarrow n-3-2⋮n-3\)
mà \(n-3⋮n-3\)
nên \(-2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(-2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...
Gọi ƯCLN của 2n+3 và 4n+8 là d (d thuộc N*)
Ta có 2n+ 3 chia hết cho d
4n + 6 chia hết cho d
4n + 8 chia hết cho d
Vậy ( 4n+8 ) - (4n+6) chai hết cho d
2 chia hết cho d
Ư(2) ={ 1;2} mà d lẻ => d= 1
Vậy 2n+ 3 và 4n+8 là 2 số nguyên tố cùng nhau
các ý khác cũng tương tự
Gọi d là ƯCLN(7n+10, 5n+7)
Ta có: 7n+10 chia hết cho d, 5n+7 chia hết cho d
<=>[5(7n+10)-7(5n+7)] chia hết cho d
<=>35n+50-35n+49
<=>1 chia hết cho d
<=> d = 1
các bài còn lại thì giải tương tự
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11