Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).
\(A=\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{n\left(n+5\right)}\)
\(A=\frac{1}{5}\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{n\left(n+5\right)}\right)\)
\(A=\frac{1}{5}\left(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{n+5-n}{n\left(n+5\right)}\right)\)
\(A=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+5}\right)\)
\(A=\frac{1}{5}\left(1-\frac{1}{n+5}\right)\)
\(A=\frac{n+4}{5n+25}\)
\(B=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(3B=1.2.3+2.3.3+3.4.3+...+n\left(n+1\right).3\)
\(3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(3B=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
\(3B=n\left(n+1\right)\left(n+2\right)\)
\(B=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
ta có :
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=13.3+13.3^4+13.3^7+..+13.3^{58}\text{ nên A chia hết cho 13}\)
b. ta có :
\(M=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^5+2^7\right)+..+\left(2^{18}+2^{20}\right)\)
\(=2.5+2^2.5+2^5.5+2^6.5+..+2^{18}.5\text{ nên B chia hết cho 5}\)
â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)
\(\Leftrightarrow2n-1⋮n+1\)khi \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\) \
\(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)
\(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)
Vậy \(n\in\left(-4;-2;0;2\right)\)
b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)
\(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)
\(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)
\(\Rightarrow3n-2\in U\left(11\right)\)
\(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)
\(\Rightarrow n\in\left(-3;1;\right)\)
Phần c) bạn tự làm nhé!
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
\(A=2+2^2+2^3+2^4+.....2^{100}\)
\(=2.3+2^3.3+....2^{99}.3\)
\(=6\left(1+2^2+....2^{98}\right)⋮6\)
76 - { 2 . [ 2 . 52 - ( 31 - 2.3 ) ] } + 3. 25
= 76 - { 2 .[ 50 - ( 31 - 6 ) ] } + 75
= 76 - {2 . [ 50 - 25 ] } + 75
= 76 - { 2 . 25 } + 75
= 76 - 100 + 75
= 51.