Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^1+7^2+...+7^{4n-1}+7^{4n}\)
\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(=7^1\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(=7^1\cdot400+...+7^{4n-3}\cdot400\)
\(=400\left(7^1+...+7^{4n-3}\right)⋮400\)
71 + 72 + 73 + 74 + ... + 74n - 1 + 74n
= (71 + 72 + 73 + 74) + (75 + 76 + 77 + 78) + ... + (74n - 3 + 74n - 2 + 74n - 1 + 74n)
= 71 . (1 + 7 + 72 + 73) + 75 . (1 + 7 + 72 + 73) + ... + 74n - 3 . (1 + 7 + 72 + 73)
= 71 . 400 + 75 . 400 + ... + 74n - 3 . 400
= 400 . (71 + 75 + ... + 74n - 3)
Vì 400 \(⋮\)400 nên suy ra 400 . (71 + 75 + ... + 74n - 3) \(⋮\)400
Vậy ....
~.~
Ta có 71+72+73+74+...+74n-1+74n
= (71+72+73+74)+...+(74n-3+74n-2+74n-1+74n)
= (71+72+73+74)+...+74n-3(71+72+73+74)
= 2800+...+74n-3.2800
= 2800.(1+...+74n-3)
Mà 2800 chia hết cho 400 nên 71+72+73+74+...+74n-1+74n chia hết cho 400
Lời giải:
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+....+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(7^2A=1-\frac{1}{7^2}+....+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow A+7^2A=1-\frac{1}{7^{100}}\Rightarrow 50A=1-\frac{1}{7^{100}}<1\)
$\Rightarrow A< \frac{1}{50}$
1/ A= 71+72+73+74+75+76\(⋮\)57
Ta có : 71+72+73+74+75+76= (71+72+73)+(74+75+76)
=7x(1+7+72)+74x(1+7+72)
=7x57+74x57
=57x(7+74)\(⋮\)57
4n+17
Vậy A \(⋮\)57
Phần 2 thiếu đề bài
3/ 4n+17\(⋮\)2n+3
=>4n+17-2x(2n+3)\(⋮\) 2n+3
=>4n+17-4n-6\(⋮\) 2n+3
=>11\(⋮\)2n+3
=>2n+3 \(\varepsilon\)Ư(11)
mà Ư(11) ={1;11}
Vì 2n+3 là số tự nhiên =>2n+3 =11
=>2n=11-3
=>2n=8
=>n=8 :2
=> n=4
Vậy n=4 thì ...
4/ 9n+17 \(⋮\)3n+2
=>9n+17-3x(3n+2)\(⋮\)3n+2
=>9n+17-9n-6\(⋮\)3n+2
=>11\(⋮\)3n+2
=>3n+2 \(\varepsilon\)Ư(11)
mà Ư(11)={1;11}
Vì 3n+2 là số tự nhiên => 3n+2>2
=>3n+2 =11
=>3n=11-2
=>3n=9
=>n=9:3
=>n=3
Vậy n=3 thì ...
\(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(\Rightarrow7^2.A=\frac{1}{1}-\frac{1}{7^2}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow49A+A=1-\frac{1}{7^{100}}\)
\(50A=1-\frac{1}{7^{100}}<1\Rightarrow A<\frac{1}{50}\)
Cần gấp