Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+x=0\)
\(\Leftrightarrow x\left(x^2+1\right)=0\)
thấy :x2+1>0 loại
suy ra x=0
\(a,x\left(x-5\right)+6< 0\Leftrightarrow\left(x+6\right)\left(x-5\right)< 0\)
\(\orbr{\begin{cases}x+6< 0\\x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -6\\x< 5\end{cases}}}\)
\(b,x^2+\left(x-2\right)\left(x+2\right)>2x\left(x-2\right)\)
\(\Leftrightarrow x^2+x^2-4>2x^2-4x\Leftrightarrow-4>-4x\)
\(\Leftrightarrow-4x< -4\Rightarrow x>1\)
\(c,\left(x-3\right)\left(x-3\right)+\left(x+5\right)\left(x+5\right)< 2\left(x-3\left(x+5\right)\right)\)
\(\Leftrightarrow x^2-6x+9+x^2+10x+25< 2x^2+4x-30\)
\(\Leftrightarrow2x^2-2x^2+4x-4x< -30-34\)
\(\Leftrightarrow0x< -64\)
bất phương trình vô nghiệm
a) \(A=\left(2x-1\right)\left(x+3\right)-\left(x-2\right)\left(3x-4\right)+5x\)
\(=\left(2x^2+6x-x-3\right)-\left(3x^2-4x-6x+8\right)+5x\)
\(=\left(2x^2+5x-3\right)-\left(3x^2-10x+8\right)+5x\)
\(=2x^2+5x-3-3x^2+10x-8+5x\)
\(=x^2+20x-11\)
b) \(5x\left(2x^2-3x+1\right)-2x\left(x+1\right)\left(x-2\right)\)
\(=10x^3-15x^2+5x-2x\left(x^2-2x+x-2\right)\)
\(=10x^3-15x^2+5x-2x^3+4x^2-2x^2+4x\)
\(=8x^3-13x^2+9x\)
c) \(\left(3x+2\right)\left(x+1\right)-2x\left(x+3\right)-2x+1\)
\(=3x^2+3x+2x+2-2x^2-6x-2x+1\)
\(=x^2-3x+3\)
Lớp 8 nên sử dụng hằng đẳng thức
(=) X3 +3x2 +y3+5y2-x3-y3=0
(
b ) Ta có : 3x2 - 7x - 6
= 3x2 - 9x + 2x - 6
= 3x (x - 3) + 2(x - 3)
= (x - 3)(3x + 2)
Ta có
\(\left(1+\sqrt{15}\right)^2=16+2\sqrt{15}< 16+2\sqrt{16}=16+8=24\)
Ta lại có \(\sqrt{24}^2=24\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
Bài làm
Ta có: ( 1 + V15 )2 = 1 + 15 + 2 V15 = 16 + 2V15
V24 2 = 24 = 16 + 8
Vì V152 = 15 < 16 = 42
Nên V15 < 4
=> 2V15 < 8
=> 16 + 2V15 < 24
=> ( 1 + V15 )2 < V24 2
Vậy 1 + V15 < V24
# Chúc bạn học tốt #
\(2x^2+6x-8=0\)
<=> \(2x^2-2x+8x-8=0\)
<=> \(2x\left(x-1\right)+8\left(x-1\right)=0\)
<=> \(\left(2x+8\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}2x+8=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-4\\x=1\end{cases}}\)
\(2x^2-x-1=0\)
<=> \(2x^2-2x+x-1=0\)
<=> \(2x\left(x-1\right)+\left(x-1\right)=0\)
<=> \(\left(2x+1\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
\(4x^2-5x-9=0\)
<=> \(4x^2+4x-9x-9=0\)
<=> \(4x\left(x+1\right)-9\left(x+1\right)=0\)
<=> \(\left(4x-9\right)\left(x+1\right)=0\)
<=> \(\hept{\begin{cases}4x-9=0\\x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)
học tốt
\(2x^2+6x-8=0\)
\(< =>2x^2-2x+8x-8=0\)
\(\Leftrightarrow2x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow2x+8=0\)hoặc \(x-1=0\)
\(\Leftrightarrow x=-4\)hoặc \(x=1\)
\(5x\left(x-1\right)-3\left(1-x\right)=0\)
\(5x\left(x-1\right)+3\left(x-1\right)=0\)
\(\left(5x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=1\end{matrix}\right.\)
Vậy...
\(5x\left(x-1\right)-3\left(1-x\right)=0\)
<=> \(5x\left(x-1\right)+3\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(5x+3\right)=0\)
<=> \(\left[{}\begin{matrix}x-1=0\\5x+3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{5}\end{matrix}\right.\)