Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)/x-2/+/x-5/=3
TH1:
x-2+x-5=3
x+x-2-5=3
2x-7=3
2x=3+7
2x=10
x=10:2
x=5
TH2
x-2+x-5= -3
x+x-2-5=-3
2x-7=-3
2x=-3+7
2x=4
x=4:2
x=2
Vậy x\(\in\){5;2}
a) Ta có bảng bỏ dấu GTTĐ:
x | x<2 | 2 | 2<x<5 | 5 | 5<x |
|x-2| | 2-x | 0 | x-2 | 3 | x-2 |
|x-5| | 5-x | 3 | 5-x | 0 | x-5 |
Vế Trái | 7-2x | 3 | 3 | 3 | 2x-7 |
+) Với x < 2 : \(7-2x=3\Leftrightarrow2x=4\Leftrightarrow x=2\)( vô lý => Loại )
+) Với x = 2 :\(3=3\)( hợp lý => Chọn )
+) Với 2 < x < 5 : \(3=3\)( hợp lý => Chọn )
+) Với x = 5 : \(3=3\)( hợp lý => Chọn )
+) Với x > 5 : \(2x-7=3\Leftrightarrow2x=10\Leftrightarrow x=5\)( vô lý => Loại )
Vậy \(2\le x\le5.\)
Mình chỉ làm phần a) thôi nhé. 5 phần còn lại bạn làm tương tự nhé !
Nhóc anh chỉ làm 1 phần hướng dẫn nhé các phần khác em nhìn và làm theo.
a) \(|x-2|+|x-5|=3\left(1\right)\)
Ta có: \(x-2=0\Leftrightarrow x=2\)
\(x-5=0\Leftrightarrow x=5\)
Lập bảng xét dấu:
x-2 x-5 2 5 0 0 - - - + + +
+) Với \(x< 2\Rightarrow\hept{\begin{cases}x-2< 0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=2-x\\|x-5|=5-x\end{cases}}\left(2\right)}\)
Thay (2) vào (1) ta được :
\(\left(2-x\right)+\left(5-x\right)=3\)
\(7-2x=3\)
\(2x=4\)
\(x=2\)( chọn )
+) Với \(2\le x\le5\Rightarrow\hept{\begin{cases}x-2>0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=5-x\end{cases}}}\left(3\right)\)
Thay (3) vào (1) ta được :
\(\left(x-2\right)+\left(5-x\right)=3\)
\(3=3\)( luôn đúng chọn )
+) Với \(x>5\Rightarrow\hept{\begin{cases}x-2>0\\x-5>0\end{cases}}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=x-5\end{cases}\left(4\right)}\)
Thay (4) vào (1) ta được :
\(\left(x-2\right)+\left(x-5\right)=3\)
\(2x-7=3\)
\(2x=10\)
\(x=5\)( loại )
Vậy \(2\le x\le5\)
a) Đặt\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=k.\)
Ta có : x = 5k ; y = 2k ; z = 3k và xyz = 240
=> 5k . 2k . 3k = 240
=> k3 . 30 = 240
=> k3 = 8
=> k = 2
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=2\Leftrightarrow x=10\\\frac{y}{2}=2\Leftrightarrow y=4\\\frac{z}{3}=2\Leftrightarrow x=6\end{cases}}\)
Vậy : x = 10; y = 4; z = 6
b) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{4}=\frac{x^2-y^2-z^2}{16-9-4}=\frac{12}{3}=4\)
Suy ra :
\(\frac{x^2}{16}=4\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)
\(\frac{y^2}{9}=4\Leftrightarrow y^2=36\Leftrightarrow y=\pm6\)
\(\frac{z^2}{4}=4\Leftrightarrow z^2=16\Leftrightarrow z=\pm4\)
Vậy \(\hept{\begin{cases}x=8\\y=6\\z=4\end{cases}}\)hoặc \(\hept{\begin{cases}x=-8\\y=-6\\z=-4\end{cases}}\)
c) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{16+9+25}=\frac{200}{50}=4\)
Suy ra :
\(\frac{x^2}{16}=4\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)
\(\frac{y^2}{9}=4\Leftrightarrow y^2=36\Leftrightarrow y=\pm6\)
\(\frac{z^2}{25}=4\Leftrightarrow z^2=100\Leftrightarrow z=\pm10\)
Vậy :\(\hept{\begin{cases}x=8\\y=6\\z=10\end{cases}}\)hoặc \(\hept{\begin{cases}x=-8\\y=-6\\z=-10\end{cases}}\)
Tìm x . biết :
\(a,\frac{2}{5}:\left(-x-\frac{1}{2}\right)=\frac{4}{5}\)
\(\Rightarrow-x-\frac{1}{2}=\frac{2}{5}:\frac{4}{5}\)
\(\Rightarrow-x-\frac{1}{2}=\frac{2}{5}.\frac{5}{4}\)
\(\Rightarrow-x-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow-x=\frac{1}{2}+\frac{1}{2}\)
\(\Rightarrow-x=1\)
\(\Rightarrow x=-1\)
Vậy \(x=-1\)
a. \(\frac{2}{5}.\left(-x-\frac{1}{2}\right)=\frac{4}{5}\)
\(\Rightarrow-x-\frac{1}{2}=\frac{2}{5}:\frac{4}{5}\)
\(\Rightarrow-x-\frac{1}{2}=\frac{2}{5}.\frac{5}{4}\)
\(\Rightarrow-x-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow-x=\frac{1}{2}+\frac{1}{2}\)
\(\Rightarrow-x=1\)
\(\Rightarrow x=-1\)
Ta có: \(\frac{5}{x}-\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{5}{x}=\frac{1}{8}+\frac{y}{4}\)
=> \(\frac{5}{x}=\frac{1+2y}{8}\)
=> (1 + 2y)x = 40 = 1 . 40 = 2.20 = 5 . 8 = 4 . 10
Vì 1 + 2y là số lẽ nên => 1 + 2y \(\in\)1; 5;-1;-5
Lập bảng :
x | 8 | 10 | -8 | -10 |
1 + 2y | 5 | 1 | -5 | -1 |
y | 2 | 0 | -3 | -1 |
Vậy ...
b) Ta có: \(\frac{x}{5}+\frac{1}{10}=\frac{1}{y}\)
=> \(\frac{2x+1}{10}=\frac{1}{y}\)
=> (2x + 1).y = 10 = 1 . 10 = 2. 5
Vì 2x + 1 là số lẽ => 2x + 1 \(\in\){1; 5; -1; -5}
Lập bảng: tương tự câu a
c) Như câu b.
\(\frac{5+x}{4-x}=\frac{1}{2}\)
\(\Rightarrow2\left(5+x\right)=4-x\)
\(\Leftrightarrow10+2x=4-x\)
\(\Leftrightarrow3x=-6\)
\(\Leftrightarrow x=-2\)
\(\frac{5+x}{4-x}=\frac{1}{2}\)
\(\Rightarrow2\left(5+x\right)=4-x\)
\(10+2x=4-x\)
\(2x+x=4-10\)
\(3x=-6\)
\(\Rightarrow x=-2\)