K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2021

\(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\\ \Leftrightarrow\left(x+2\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

23 tháng 11 2021

⇔(5x-4-49x)(5x-4+49x)=0

⇔(-44x-4)(54x-4)=0

⇒-44x-4=0 hoặc 54x-4=0

TH1:-44x-4=0                TH2:54x-4=0

     ⇔x=-1/11                   ⇔x=2/27

Vậy xϵ{-1/11;2/27}

11 tháng 8 2017

a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy ...

b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy ...

c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

Vậy ...

d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy ...

12 tháng 8 2017

cam on

22 tháng 8 2016

a) \(x^3\)+\(x^2\)=36

\(\Leftrightarrow\)\(x^3\)+\(x^2\)\(-36=0\)

\(\Leftrightarrow\)\(x^3\)\(-3x^2\)\(+4x^2\)\(-12x\)\(+12x-36=0\)

\(\Leftrightarrow\)\(x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2+4x+12\right)=0\)

Suy ra: \(x-3=0\) hoặc \(x^2+4x+12=0\)

  • \(x-3=0\) \(\Leftrightarrow\) \(x=3\)
  • \(x^2+4x+12=0\) (phương trình vô nghiệm)

Vậy \(x=3\)

 

22 tháng 8 2016

giờ mình đi học mai sẽ làm nốt phần còn lại

 

28 tháng 7 2018

\(4x^3-36x=0\)

\(x.\left[\left(2x\right)^2-6^2\right]=0\)

\(x.\left(2x-6\right)\left(2x+6\right)=0\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\2x-6=0\end{cases}}\)hoặc \(2x+6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)hoặc \(x=-3\)

KL:...............................................

tích mình với

ai tích mình

mình tích lại

thanks

21 tháng 7 2017

\(\left(5x-4\right)^2-49x^2\)

\(=\left(5x-4\right)^2-\left(7x\right)^2\)

\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)

\(=\left(-2x-4\right)\left(12x-4\right)\)

Chúc bạn học tốt!!!

21 tháng 7 2017

\(\left(5x-4\right)^2-49x^2\)

= \(\left(5x-4\right)^2-(7x)^2\)

= \(\left(5x-4-7x\right)\left(5x-4+7x\right)\)

= \(\left(-2x-4\right)\left(12x-4\right)\)

= \([2\left(-x-2\right)].[4\left(3x-1\right)]\)

= \(8\left(-x-2\right)\left(3x-1\right)\)

28 tháng 6 2017

\(\left(5x-4\right)^2-49x^2\)

\(=\left(5x-4\right)^2-\left(7x\right)^2\)

\(=\left(5x-4-7\right)\left(5x-4+7\right)\)

\(=\left(5x-11\right)\left(5x+3\right)\)

28 tháng 6 2017

(5x-4)2-(7x)2

= (5x-4-7x)(5x-4+7x)

= (-2x-4)(12x-4)

= -8(x+2)(3x-1)

28 tháng 8 2020

3x+18y=3(x+6y)

10 tháng 5 2021

b, \(15\left(x+3\right)+20x\left(x+8\right)=15x+45+20x^2+160x\)

\(=20x^2+175x+45=...\)

c, \(6\left(x-9\right)-3x\left(y-x\right)=6x-54-3xy+3x^2\)

d, \(2xy+10x^2-x\) không phân tích được nữa nhé

e, \(4ab^2-28a+16b\)không phân tích được nữa nhé

g, \(a\left(a+b\right)=ab\left(a+b\right)< =>\left(a+b\right)\left(a-ab\right)=0< =>\left(a+b\right)a\left(1-b\right)=0\)

h, \(30a^2+6a-6=\left(\sqrt{30}a\right)^2+2.\sqrt{30}.\frac{3}{\sqrt{30}}+\frac{3}{10}-\frac{63}{10}\)

\(=\left(\sqrt{30}a+\frac{3}{\sqrt{30}}\right)^2-\sqrt{\frac{63}{10}}^2=\left(\sqrt{30}a+\frac{3}{\sqrt{30}}-\sqrt{\frac{63}{10}}\right)\left(\sqrt{30}a+\frac{3}{\sqrt{30}}+\sqrt{\frac{63}{10}}\right)\)

14 tháng 8 2017

d) \(ax^2-5x^2-ax+5x+a-5=\left(ax^2-ax+a\right)+\left(-5x^2+5x-5\right)\)

\(=a\left(x^2-x+1\right)-5\left(x^2-x+1\right)=\left(a-5\right)\left(x^2-x+1\right)\)

e) \(ax-bx-2cx-2a+2b+4c=x\left(a-b-2c\right)-2\left(a-b-2c\right)\)

\(=\left(x-2\right)\left(a-b-2c\right)\)

14 tháng 8 2017

ax^2 - 5x^2-ax+5x+a-5

=x^2(a-5) -x(a-5)+(a-5)

=(a-5)(x^2-x+1)

ax-bx-2cx-2a+2b+4c

=x(a-b-c) -2(a-b-c)

=(x-2)(a-b-c)

Nhập ĐT nên k tiện gõ công thức, thông cảm

28 tháng 8 2020

bài 1 là phân tích đa thức thành nhân tử à ?

12 tháng 10 2018

a) ( 3x -1 )2  - 16  

= (3x -1 )  - 4

( 3x -1 -4 ).( 3x -1 +4 )

b)  ( 5x-4 ) - 49x

= ( 5x-4 )   - (7x)2

=( 5x -4 -7x).( 5x -4 + 7x )

=( -2x -4 ) .( 12x -4 )

còn lại giống tương tự nha pạn 

~ hok tốt ~

12 tháng 10 2018

a, ( 3x - 1 )2 - 16

= (3x-1 ) 2 - 42

= [ 3x - 1 + 4 ] . [ 3x - 1 - 4 ]

 b, ( 5x - 4 )2 - 49x2

( 5x - 4 )2  - (7x)2

= [ 5x - 4 + 7x ] . [ 5x - 4 - 7x ]

c, 4x2 - ( 2x - 5 )2

= (2x)2 - ( 2x - 5 ) 2

= [ 2x + 2x - 5 ] . [ 2x - 2x - 5 ]

11 tháng 8 2018

Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

Đặt \(x^2+5x=a\) . Phương trình trở thành :

\(a^2-2a-24=0\)

\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)

Với \(a=-4\)

\(\Leftrightarrow x^2+5x=-4\)

\(\Leftrightarrow x^2+5x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

Với \(a=6\)

\(\Leftrightarrow x^2+5x=6\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy \(S=\left\{-1;2;-3;-4\right\}\)

11 tháng 8 2018

1) x4 - 5x2 + 4 = 0

⇔ x4 - x2 - 4x2 + 4 = 0

⇔ x2(x2 - 1) - 4(x2 - 1) = 0

⇔ (x2 - 1)(x2 - 4) = 0

\(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)

Vậy \(x=\pm1\)\(x=\pm2\)