Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
a) \(x^3\)+\(x^2\)=36
\(\Leftrightarrow\)\(x^3\)+\(x^2\)\(-36=0\)
\(\Leftrightarrow\)\(x^3\)\(-3x^2\)\(+4x^2\)\(-12x\)\(+12x-36=0\)
\(\Leftrightarrow\)\(x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2+4x+12\right)=0\)
Suy ra: \(x-3=0\) hoặc \(x^2+4x+12=0\)
- \(x-3=0\) \(\Leftrightarrow\) \(x=3\)
- \(x^2+4x+12=0\) (phương trình vô nghiệm)
Vậy \(x=3\)
\(4x^3-36x=0\)
\(x.\left[\left(2x\right)^2-6^2\right]=0\)
\(x.\left(2x-6\right)\left(2x+6\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\2x-6=0\end{cases}}\)hoặc \(2x+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)hoặc \(x=-3\)
KL:...............................................
\(\left(5x-4\right)^2-49x^2\)
\(=\left(5x-4\right)^2-\left(7x\right)^2\)
\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)
\(=\left(-2x-4\right)\left(12x-4\right)\)
Chúc bạn học tốt!!!
\(\left(5x-4\right)^2-49x^2\)
= \(\left(5x-4\right)^2-(7x)^2\)
= \(\left(5x-4-7x\right)\left(5x-4+7x\right)\)
= \(\left(-2x-4\right)\left(12x-4\right)\)
= \([2\left(-x-2\right)].[4\left(3x-1\right)]\)
= \(8\left(-x-2\right)\left(3x-1\right)\)
\(\left(5x-4\right)^2-49x^2\)
\(=\left(5x-4\right)^2-\left(7x\right)^2\)
\(=\left(5x-4-7\right)\left(5x-4+7\right)\)
\(=\left(5x-11\right)\left(5x+3\right)\)
(5x-4)2-(7x)2
= (5x-4-7x)(5x-4+7x)
= (-2x-4)(12x-4)
= -8(x+2)(3x-1)
b, \(15\left(x+3\right)+20x\left(x+8\right)=15x+45+20x^2+160x\)
\(=20x^2+175x+45=...\)
c, \(6\left(x-9\right)-3x\left(y-x\right)=6x-54-3xy+3x^2\)
d, \(2xy+10x^2-x\) không phân tích được nữa nhé
e, \(4ab^2-28a+16b\)không phân tích được nữa nhé
g, \(a\left(a+b\right)=ab\left(a+b\right)< =>\left(a+b\right)\left(a-ab\right)=0< =>\left(a+b\right)a\left(1-b\right)=0\)
h, \(30a^2+6a-6=\left(\sqrt{30}a\right)^2+2.\sqrt{30}.\frac{3}{\sqrt{30}}+\frac{3}{10}-\frac{63}{10}\)
\(=\left(\sqrt{30}a+\frac{3}{\sqrt{30}}\right)^2-\sqrt{\frac{63}{10}}^2=\left(\sqrt{30}a+\frac{3}{\sqrt{30}}-\sqrt{\frac{63}{10}}\right)\left(\sqrt{30}a+\frac{3}{\sqrt{30}}+\sqrt{\frac{63}{10}}\right)\)
d) \(ax^2-5x^2-ax+5x+a-5=\left(ax^2-ax+a\right)+\left(-5x^2+5x-5\right)\)
\(=a\left(x^2-x+1\right)-5\left(x^2-x+1\right)=\left(a-5\right)\left(x^2-x+1\right)\)
e) \(ax-bx-2cx-2a+2b+4c=x\left(a-b-2c\right)-2\left(a-b-2c\right)\)
\(=\left(x-2\right)\left(a-b-2c\right)\)
a) ( 3x -1 )2 - 16
= (3x -1 ) 2 - 42
= ( 3x -1 -4 ).( 3x -1 +4 )
b) ( 5x-4 ) 2 - 49x2
= ( 5x-4 ) 2 - (7x)2
=( 5x -4 -7x).( 5x -4 + 7x )
=( -2x -4 ) .( 12x -4 )
còn lại giống tương tự nha pạn
~ hok tốt ~
Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
Đặt \(x^2+5x=a\) . Phương trình trở thành :
\(a^2-2a-24=0\)
\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)
Với \(a=-4\)
\(\Leftrightarrow x^2+5x=-4\)
\(\Leftrightarrow x^2+5x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
Với \(a=6\)
\(\Leftrightarrow x^2+5x=6\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-1;2;-3;-4\right\}\)
1) x4 - 5x2 + 4 = 0
⇔ x4 - x2 - 4x2 + 4 = 0
⇔ x2(x2 - 1) - 4(x2 - 1) = 0
⇔ (x2 - 1)(x2 - 4) = 0
⇔ \(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)
Vậy \(x=\pm1\)và \(x=\pm2\)
\(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\\ \Leftrightarrow\left(x+2\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
⇔(5x-4-49x)(5x-4+49x)=0
⇔(-44x-4)(54x-4)=0
⇒-44x-4=0 hoặc 54x-4=0
TH1:-44x-4=0 TH2:54x-4=0
⇔x=-1/11 ⇔x=2/27
Vậy xϵ{-1/11;2/27}