Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(5\sqrt{x-1}-\sqrt{36x-36}+\sqrt{9x-9}=\sqrt{8x+12}\) \(\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow5\sqrt{x-1}-6\sqrt{x-1}+3\sqrt{x-1}=\sqrt{8x+12}\)
\(\Leftrightarrow2\sqrt{x-1}=\sqrt{8x+12}\)
\(\Leftrightarrow\left(2\sqrt{x-1}\right)^2=\left(\sqrt{8x+12}\right)^2\)
\(\Leftrightarrow4.\left(x-1\right)=8x+12\)
\(\Leftrightarrow4x-4=8x+12\)
\(\Leftrightarrow-4x=16\)
\(\Leftrightarrow x=-4\left(L\right)\)
Vậy \(S=\varnothing\)
\(5\sqrt{x-1}-\sqrt{36\left(x-1\right)}+\sqrt{9\left(x-1\right)}=\sqrt{4\left(2x+3\right)}\)
\(5\sqrt{x-1}-6\sqrt{x-1}+3\sqrt{x-1}=2\sqrt{2x+3}\)
\(2\sqrt{x-1}=2\sqrt{2x+3}\)
\(\sqrt{x-1}=\sqrt{2x+3}\)
\(\hept{\begin{cases}2x+3\ge0\\x-1=2x-3\end{cases}}\)
\(\hept{\begin{cases}2x\ge-3\\x-2x=-3+1\end{cases}}\)
\(\hept{\begin{cases}x\ge-\frac{3}{2}\\-x=-2\end{cases}}\)
\(\hept{\begin{cases}x\ge-\frac{3}{2}\\x=2\end{cases}}\)
\(\Rightarrow x=2\)
2/ \(\Rightarrow5\sqrt{x+1}-6\sqrt{x+1}+3\sqrt{x+1}=2\sqrt{2x+3}\)
\(\Rightarrow\sqrt{x+1}\left(5-6+3\right)=2\sqrt{2x+3}\)
\(\Rightarrow2\sqrt{x+1}=2\sqrt{2x-3}\Rightarrow\sqrt{x+1}=\sqrt{2x+3}\)
\(\Rightarrow x+1=2x+3\Rightarrow x=-2\)
bài 1:
đkxđ: x\(\ge\)0;y\(\ge\)1;z\(\ge\)2
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\left(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\right)=2.\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x}+y-2\sqrt{y-1}+z-2\sqrt{z-2}=0\)
\(\Leftrightarrow x-2\sqrt{x}+1+y-1-2\sqrt{y-1}+1+z-2-2\sqrt{z-2}+1+1=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=-1\)(Vô lí)
Vậy phương trình vô nghiệm
bài 2:
đkxđ: x+1\(\ne\)0
<=>x\(\ne\)-1
\(5\sqrt{x+1}-\sqrt{36x+36}+\sqrt{9x+9}=\sqrt{8x+12}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{36.\left(x+1\right)}+\sqrt{9.\left(x+1\right)}=\sqrt{8x+12}\)
\(\Leftrightarrow5\sqrt{x+1}-6\sqrt{x+1}+3\sqrt{x+1}=\sqrt{8x+12}\)
\(\Leftrightarrow2\sqrt{x+1}=\sqrt{8x+12}\)
\(\Leftrightarrow4.\left(x+1\right)=8x+12\)
\(\Leftrightarrow4x+4=8x+12\)
\(\Leftrightarrow-4x=8\)
\(\Leftrightarrow x=-2\)(thõa mãn)
Vậy x=-2
a) Ta có: \(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=20\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow\sqrt{4}.\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9}.\sqrt{x-2}=20\)
\(\Leftrightarrow2.\sqrt{x-2}+5\sqrt{x-2}-3.\sqrt{x-2}=20\)
\(\Leftrightarrow4.\sqrt{x-2}=20\)
\(\Leftrightarrow\sqrt{x-2}=5\)
\(\Leftrightarrow x-2=25\)
\(\Leftrightarrow x=27\left(TM\right)\)
Vậy \(S=\left\{27\right\}\)
a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)
TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)
TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)
Vậy x=0,5...
d, đk \(x\ge-1\)
=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)
\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)
a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow\left|3x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b) Ta có: \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)
\(\Leftrightarrow\left|x-3\right|=4-3x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)
a: =>2*căn x+5+căn x+5-1/3*3*căn x+5=4
=>2*căn(x+5)=4
=>căn (x+5)=2
=>x+5=4
=>x=-1
b: =>\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
=>2*căn x-1=16
=>x-1=64
=>x=65
c, \(\sqrt{\left(x-3\right)^2}-2\sqrt{\left(x-1\right)^2}+\sqrt{x^2}=0\\ \Leftrightarrow\left|x-3\right|-2\left|x-1\right|+\left|x\right|=0\left(1\right)\)
TH1: \(x\ge3\)
\(\left(1\right)\Rightarrow x-3-2x+2+x=0\\ \Leftrightarrow-1=0\left(loại\right)\)
TH2: \(2\le x< 3\)
\(\left(1\right)\Rightarrow3-x-2x+2+x=0\\ \Leftrightarrow-2x=-5\\ \Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)
TH3: \(0\le x< 2\)
\(\left(1\right)\Rightarrow3-x+2x-2+x=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
TH4: \(x< 0\)
\(\left(1\right)\Rightarrow3-x+2x-2-x-=0\\ \Leftrightarrow1=0\left(loại\right)\)
Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{5}{2}\right\}\)
\(ĐK:x\ge1\\ PT\Leftrightarrow12\sqrt{x-1}-\sqrt{x-1}-8\sqrt{x-1}+\sqrt{x-1}=16\\ \Leftrightarrow4\sqrt{x-1}=16\\ \Leftrightarrow\sqrt{x-1}=4\\ \Leftrightarrow x-1=16\\ \Leftrightarrow x=17\left(tm\right)\)
Chịu thua
ĐKXĐ: bạn tự tìm nhé
pt<=> \(5\sqrt{x-1}+6\sqrt{x-1}+3\sqrt{x-1}=2\sqrt{2x+3}\)
<=>\(14\sqrt{x-1}=2\sqrt{2x-3}\)
<=>\(196\left(x-1\right)=4\left(2x-3\right)\)
<=>\(196x-196=8x-12\)
<=>\(188x=184\)
<=>\(x=\frac{46}{47}\)