K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 9 2021

\(f\left(0\right)=\dfrac{b}{d}\Rightarrow f\left(f\left(0\right)\right)=0\Rightarrow f\left(\dfrac{b}{d}\right)=0\)

\(\Rightarrow\dfrac{\dfrac{ab}{d}+b}{\dfrac{cb}{d}+d}=0\Rightarrow b\left(a+d\right)=0\Rightarrow\left[{}\begin{matrix}b=0\\d=-a\end{matrix}\right.\)

TH1: \(b=0\)

\(f\left(1\right)=1\Rightarrow a=c+d\)

\(f\left(2\right)=2\Rightarrow2a=2\left(2c+d\right)\Rightarrow a=2c+d\) 

\(\Rightarrow2c+d=c+d\Rightarrow c=0\) (ktm)

TH2: \(d=-a\)

\(f\left(1\right)=1\Rightarrow a+b=c+d=c-a\Rightarrow2a+b=c\) (1)

\(f\left(2\right)=2\Rightarrow2a+b=2\left(2c+d\right)=2\left(2c-a\right)\Rightarrow4a+b=4c\) (2)

Trừ (2) cho (1) \(\Rightarrow2a=3c\Rightarrow\dfrac{a}{c}=\dfrac{3}{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow\infty}\dfrac{ax+b}{cx+d}=\dfrac{a}{c}=\dfrac{3}{2}\)

Hay \(y=\dfrac{3}{2}\) là tiệm cận ngang

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

30 tháng 5 2022

1D

2A

3A

4D

5C

 

30 tháng 5 2022

1.D

2.A

3.A

4.D

5.C

12 tháng 3 2019


23 tháng 4 2016

Ta có \(f'\left(x\right)=3ax^2+2bx+c;f"\left(x\right)=6ax+2b\)

Hàm số \(f\left(x\right)\) đạt cực tiểu tại \(x=0\) khi và chỉ khi 

\(\begin{cases}f'\left(0\right)=0\\f"\left(0\right)>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\2b>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\b>0\end{cases}\left(1\right)\)

Hàm số \(f\left(x\right)\) đạt cực đại tại \(x=1\) khi và chỉ khi \(\begin{cases}f'\left(1\right)=0\\f"\left(1\right)< 0\end{cases}\)\(\Leftrightarrow\begin{cases}3a+2b+c=0\\6a+2b< 0\end{cases}\)

\(\begin{cases}f\left(0\right)=0\\f\left(1\right)=1\end{cases}\)\(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) \(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) (3)

Từ (1), (2), (3) suy ra \(a=-2;b=3;c=0;d=0\)

Kiểm tra lại \(f\left(x\right)=-2x^3+3x^2\)

Ta có \(f'\left(x\right)=-6x^2+6x;f"\left(x\right)=-12x+6\)

\(f"\left(0\right)=6>0\), hàm số đạt cực tiểu tại \(x=0\)

\(f"\left(1\right)=-6< 0\), hàm số đạt cực đại tại \(x=1\)

Vậy \(a=-2;b=3;c=0;d=0\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:
\(\frac{3x^3f(x)}{f'(x)^2+xf'(x)+x^2}=f'(x)-x\)

\(\Rightarrow 3x^3f(x)=[f'(x)-x][f'(x)^2+xf'(x)+x^2]=f'(x)^3-x^3\)

\(\Rightarrow 3f(x)=\left(\frac{f'(x)}{x}\right)^3-1\)

Đặt \(\frac{f'(x)}{x}=g(x)\Rightarrow f'(x)=xg(x)(1)\) .

\(f(1)=\frac{7}{3}\Rightarrow f'(1)=2\Rightarrow g(1)=2\)

Ta có: \(3f(x)=g(x)^3-1\)

\(\Rightarrow 3f'(x)=3g'(x)g(x)^2\)

\(\Rightarrow f'(x)=g'(x)g(x)^2(2)\)

Từ \((1);(2)\Rightarrow xg(x)=g'(x)g(x)^2\)

\(\Rightarrow x=g'(x)g(x)=\frac{1}{2}[g(x)^2]'\) \(\Rightarrow 2x=[g(x)^2]'\Rightarrow g(x)^2=\int 2xdx=x^2+c\)

Kết hợp với $g(1)=2$ suy ra $c=3$

Vậy \(g(x)^2=x^2+3\Rightarrow f(x)=\frac{g(x)^3-1}{3}=\frac{(x^2+3)^{\frac{3}{2}}-1}{3}\)

\(\Rightarrow f(2)=\frac{\sqrt{343}-1}{3}\)

29 tháng 5 2017