K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

5/5.10 + 5/10.15 + ... + 5/45.50

= 1/5 - 1/10 + 1/10 - 1/15 + ... + 1/45 - 1/50

= 1/5 - 1/50

= 9/50

31 tháng 7 2019

\(\frac{5}{5\times10}+\frac{5}{10\times15}+...+\frac{5}{45\times50}\)

\(=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{45}-\frac{1}{50}\)

\(=\frac{1}{5}-\frac{1}{50}\)

\(=\frac{9}{50}\)

~Study well~

#Thạc_Trân

14 tháng 8 2015

\(a=3\left(\frac{1}{5.10}+\frac{1}{10.15}+...+\frac{1}{45.50}\right)\)

\(a=\frac{3}{5}\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{45.50}\right)\)

\(a=\frac{3}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{45}-\frac{1}{50}\right)\)

\(a=\frac{3}{5}.\left(\frac{1}{5}-\frac{1}{50}\right)\)

\(a=\frac{3}{5}\cdot\frac{9}{50}\)

\(a=\frac{27}{250}\)

31 tháng 3 2016

=(5/5-5/10+5/10-5/15+.........+5/2015-5/2020)

=(1/5-1/10+1/10-1/20+.......+1/2015-1/2020)

=1/5-1/2020

=403/2020

ai tích mk mk vs

31 tháng 3 2016

\(\frac{5}{5.10}+\frac{5}{10.15}+.............+\frac{5}{2015.2020}\)

\(=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+..............+\frac{1}{2015}-\frac{1}{2020}\)

\(=\frac{1}{5}-\frac{1}{2020}\)

\(=\frac{403}{2020}\)

8 tháng 8 2018

\(B=\frac{5}{5\cdot10}+\frac{5}{10\cdot15}+...+\frac{5}{95\cdot100}\)

\(B=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)

\(B=\frac{1}{5}-\frac{1}{100}\)

\(B=\frac{19}{100}\)

8 tháng 8 2018

\(B=\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{95.100}\)

\(B=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)

\(B=\frac{1}{5}-\frac{1}{100}\)

\(B=\frac{19}{100}\)

11 tháng 4 2015

a)          ta có công thức \(\frac{a}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

ta có \(N=\frac{5^2}{5.10}+\frac{5^2}{10.15}+...+\frac{5^2}{2005.2010}\)

\(N=5\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{2005.2010}\right)\)

 \(N=5\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)(sử dụng quy tắc dấu ngoặc)

\(N=5\left[\frac{1}{5}-\left(\frac{1}{10}-\frac{1}{10}\right)-\left(\frac{1}{15}-\frac{1}{15}\right)-...-\left(\frac{1}{2005}-\frac{1}{2005}\right)-\frac{1}{2010}\right]\)

\(N=5\left[\frac{1}{5}-0-0-...-0-\frac{1}{2010}\right]\)

\(N=5\left[\frac{1}{5}-\frac{1}{2010}\right]\)

\(N=5.\frac{401}{2010}\)

\(N=\frac{401}{402}\)

b)         \(M=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)

               ta thấy      \(\frac{1}{11}=\frac{1}{11}\)

                                \(\frac{1}{12}<\frac{1}{11}\)

                               \(\frac{1}{13}<\frac{1}{11}\)

                               .................

                              \(\frac{1}{20}<\frac{1}{11}\)

      \(\Rightarrow M=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}<\frac{1}{11}+\frac{1}{11}+...+\frac{1}{11}\)(có 10 phân số \(\frac{1}{11}\))

                                                                                \(\Rightarrow\frac{1+1+1...+1}{11}\)

                                                                                   \(=\frac{10}{11}\)

                      ta có \(\frac{10}{11}=\frac{4020}{4422}\)(1)

                                \(\frac{401}{402}=\frac{4411}{4422}\)(2)

                       từ (1)và (2)\(\Rightarrow\frac{4020}{4422}<\frac{4411}{4422}\Leftrightarrow\frac{10}{11}<\frac{401}{402}\)

                            Vì     \(M<\frac{10}{11}<\frac{401}{402}=N\left(3\right)\)  

                               Từ \(\left(3\right)\Leftrightarrow M

b) Ta có: \(S=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{298\cdot300}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\)

\(=\frac{1}{2}-\frac{1}{300}=\frac{149}{300}< \frac{200}{300}=\frac{2}{3}\)

hay \(S< \frac{2}{3}\)(1)

Ta có: \(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)

nên \(\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{300}\right)>\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)+\left(\frac{1}{300}+\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)\)(vì mỗi ngoặc trên đều có 100 phân số có tử là 1)

\(\Leftrightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}>\frac{1}{200}\cdot100+\frac{1}{300}\cdot100\)

\(\Leftrightarrow Q>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

\(\frac{5}{6}>\frac{4}{6}=\frac{2}{3}\)

nên \(Q>\frac{2}{3}\)

hay \(\frac{2}{3}< Q\)(2)

Từ (1) và (2) suy ra S<Q

12 tháng 8 2016

\(B=\frac{15}{5.10}+\frac{15}{10.15}+....+\frac{15}{100.105}\)

\(B=3.\left(\frac{5}{5.10}+\frac{5}{10.15}+....+\frac{5}{100.105}\right)\)

\(B=3.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{105}\right)\)

\(B=3.\left(\frac{1}{5}-\frac{1}{105}\right)\)

\(B=3.\frac{4}{21}\)

\(B=\frac{4}{7}\)

27 tháng 6 2017

\(A=\dfrac{3}{5\cdot10}+\dfrac{3}{10\cdot15}+...+\dfrac{3}{95\cdot100}\)

\(=\dfrac{3}{5}\left(\dfrac{5}{5\cdot10}+\dfrac{5}{10\cdot15}+...+\dfrac{5}{95\cdot100}\right)\)

\(=\dfrac{3}{5}\left(\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+...+\dfrac{1}{95}-\dfrac{1}{100}\right)\)

\(=\dfrac{3}{5}\left(\dfrac{1}{5}-\dfrac{1}{100}\right)\)\(=\dfrac{3}{5}\cdot\dfrac{19}{100}=\dfrac{57}{500}\)

27 tháng 6 2017

\(A=\dfrac{3}{5.10}+\dfrac{3}{10.15}+.....+\dfrac{3}{95.100}\)

\(A=\dfrac{3}{5}\left(\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+.....+\dfrac{1}{95}-\dfrac{1}{100}\right)\)

\(A=\dfrac{3}{5}\left(\dfrac{1}{5}-\dfrac{1}{100}\right)\)

\(=\dfrac{3}{5}.\dfrac{19}{100}=\dfrac{19}{500}\)