Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow4^{3x}+4^x\ge\left(2^{3x}+12.2^x+6.2^{2x}+8\right)+2^x+2\)
\(\Leftrightarrow\left(4^x\right)^3+4^x\ge\left(2^x+2\right)^3+\left(2^x+2\right)\)
\(\Leftrightarrow f\left(4^x\right)\ge f\left(2^x+2\right)\)
Với \(f\left(t\right)=t^3+t,t>0;f'\left(t\right)=3t^2+1>0\) với mọi t
Do đó hàm số \(f\left(t\right)\) đồng biến trên R
Suy ra \(4^x\ge2^x+2\Leftrightarrow\left(2^x\right)^2-2^x-2\ge0\Leftrightarrow\left(2^x+1\right)\left(2^x-1\right)\ge0\)
\(\Leftrightarrow2^x-1\ge0\Leftrightarrow x\ge0\)
Vậy tập nghiệm bất phương trình là S = [0;+\(\infty\))
a) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:
2; 2; 5; 7; 10; 10; 13; 15; 19
+) Vì cỡ mẫu là \(n = 9\), là số lẻ, nên giá trị tứ phân vị thứ hai là \({Q_2} = 10\)
+) Tứ phân vị thứ nhất là trung vị của mẫu: 2; 2; 5; 7.
Do đó \({Q_1} = \frac{1}{2}(2 + 5) = 3,5\)
+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 13; 15; 19.
Do đó \({Q_3} = \frac{1}{2}(13 + 15) = 14\)
b) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:
1; 2; 5; 5; 9; 10; 10; 15; 15; 19
+) Vì cỡ mẫu là \(n = 10\), là số chẵn, nên giá trị tứ phân vị thứ hai là \({Q_2} = \frac{1}{2}(9 + 10) = 9,5\)
+) Tứ phân vị thứ nhất là trung vị của mẫu: 1; 2; 5; 5; 9.
Do đó \({Q_1} = 5\)
+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 10; 15; 15; 19.
Do đó \({Q_3} = 15\)
\(=\dfrac{5\cdot2^{30}-3^{20}\cdot2^{29}}{5\cdot2^{10}-7\cdot2^{30}\cdot3^3}\)
\(=\dfrac{2^{29}\left(5\cdot2-3^{20}\right)}{2^{10}\left(5\cdot1-7\cdot2^{20}\cdot3^3\right)}=\dfrac{2^{19}\cdot\left(10-3^{20}\right)}{5-189\cdot2^{20}}\)
......