Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2005}{2003}-1=\frac{2}{2003}\)
\(\frac{2003}{2001}-1=\frac{2}{2001}\)
Vì \(\frac{2}{2003}<\frac{2}{2001}\) nên \(\frac{2005}{2003}>\frac{2003}{2001}\)
\(\dfrac{14}{29}< \dfrac{14}{25}< \dfrac{23}{25}\\ \dfrac{39}{31}>\dfrac{39}{37}>\dfrac{38}{37}\)
\(P=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\dfrac{1}{2}\left(3^{128}-1\right)< 3^{128}-1=Q\)
\(P=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2P=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2P=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2P=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\\ 2P=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)...\left(3^{64}+1\right)\\ 2P=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\\ 2P=\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\\ 2P=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1\\ P=\dfrac{3^{128}-1}{2}< Q=3^{218}-1\)
\(\dfrac{3}{2x+4}=\dfrac{3}{2\left(x+2\right)}=\dfrac{3x-6}{2\left(x+2\right)\left(x-2\right)}\)
\(\dfrac{5}{x^2-4}=\dfrac{10}{2\left(x-2\right)\left(x+2\right)}\)
Đề này bị thiếu rồi. Phải có thêm điều kiện tam giác ABC vuông hoặc cân nữa mới làm được câu c.
Ý bạn là như này phải ko ?
\(\frac{4}{15x^3.y^5}\)
\(\frac{11}{12x^4.y^2}\)
\(\dfrac{5}{3}>1\\ \dfrac{3}{4}< 1\\ \Rightarrow\dfrac{5}{3}>\dfrac{3}{4}\)
5/3>1>3/4