Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) => \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\) => \(x=\frac{6}{5}.\left(\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\right)\)
b) \(\frac{1}{3}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\) => \(\left(\frac{1}{2}x-1\right)^4=\frac{3}{48}=\frac{1}{16}\)
=> \(\frac{1}{2}x-1=\frac{1}{2}\) hoặc \(\frac{1}{2}x-1=-\frac{1}{2}\)
=> \(\frac{1}{2}x=\frac{3}{2}\) hoặc \(\frac{1}{2}x=\frac{1}{2}\) => x = 3 hoặc x = 1
c) \(\left(1+5\right).\left(\frac{3}{5}\right)^{x-1}=\frac{54}{25}\) => \(\left(\frac{3}{5}\right)^{x-1}=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
=> x - 1= 2 => x = 3
d) \(\left(1+\left(\frac{2}{3}\right)^2\right).\left(\frac{2}{3}\right)^x=\frac{101}{243}\) => \(\frac{13}{9}.\left(\frac{2}{3}\right)^x=\frac{101}{243}\)
=> \(\left(\frac{2}{3}\right)^x=\frac{101}{243}:\frac{13}{9}=\frac{101}{351}\) (có lẽ đề sai)
2) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\); \(\frac{1}{81^8}=\frac{1}{\left(3^4\right)^8}=\frac{1}{3^{32}}\)
Vì 333 > 332 => \(\frac{1}{3^{33}}\) < \(\frac{1}{3^{32}}\) => \(\frac{1}{27^{11}}\) < \(\frac{1}{81^8}\)
b) \(\frac{1}{3^{99}}=\frac{1}{\left(3^3\right)^{33}}=\frac{1}{27^{33}}<\frac{1}{11^{21}}\) Vì 2733 > 1133 > 1121
a, -5/11.7/15.(11/-5)(-30)
=(-5/11.11/-5).(7/15.-30)
=1.7.(-30)/15
=1.7.(-2).15/15
=1.7.(-2)
=-14
b,(11/12):(33/36).3/5
=11/12:(11.3/12.3).3/5
=11/12:11/12.3/5
=1.3/5
=3/5
c,(-5/-9).3/11+(-13/18).3/11
=5/9.3/11+ -13/18.3/11
=3/11.(5/9+ -13/18)
=3/11.(10/18+ -13/18)
=3/11.-3/18
= -9/198
= -1/22
Bài 2:
a,-7/15.5/8.15/7.(-16)
=(-7/15.15/7)(5/8. -16)
= -1.-10
= 10
b,(-1/-2).16/5+(-1/-2)(-11/5)
= 1/2.16/5+1/2. (-11/5)
=1/2.(16/5+ -11/5)
=1/2.5/5
=1/2.1
=1/2
học tốt nha bạn. chúc bạn thành công
P = 1/5^2 + 2/5^3 + 3/5^4 + ... + 10/5^11 + 11/5^12 .
5P = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)
5P - P = ( \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)) - ( 1/5^2 + 2/5^3 + 3/5^4 + ... + 10/5^11 + 11/5^12 . )
4P = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)
4P = \(\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}< \frac{1}{4}\)
\(P< \frac{1}{16}\)
so easy
Giải giúp tôi