Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 4 . 2 . 25 . 5 . 175
A = 22 . 2 . 52 . 5 . 52 . 7
A = 22+1 . 52+1+2 . 7
A = 23 . 55 .7
A = 175000
\(B=4^2-10^4:\left(50\cdot273-50\cdot73\right)\)
\(B=4^2-10^4:\left[50\cdot\left(273-73\right)\right]\)
\(B=4^2-10^4:\left(50\cdot200\right)\)
\(B=4^2-10^4:10^4=4^2-1=15\)
\(C=3\times53\times6+2\times9\times87-18\times40\)
\(C=18\times53+18\times87-18\times40\)
\(C=18\times\left(53+87-40\right)\)
\(C=18\times100=1800\)
a. = 53 x (39 - 21) + 47 x (39 - 21)
= 53 x 18 + 47 x 18
= (53 + 47) x 18
= 100 x 18
= 1800
b. = 24 x 53 + 24 x 87 - 24 x 40
= 24 x (53 + 87 - 40)
= 24 x 100
= 2400
1)x - 26 =95 2)79 - x = 65 3)119 - x =97 4) (x - 67) -23 =10
x =95+26 x=79-65 x =119-97 x - 67 =10+23 =33
x =121 x=14 x =22 x =33+67
x =100
a, 5(x – 7) = 0
x – 7 = 0
x = 7
b, 95 – 5(x+2) = 45
5(x+2) = 40
x+2 = 8
x = 6
c, 6 2 x + 2 3 + 40 = 100
6(2x+8) = 60
2x+8 = 10
x = 1
d, 3(3x+9)+6 = 96
3(3x+9) = 90
3x+9 = 30
3x = 27
x = 9
e, 2 6 + 5 + x = 3 4
5+x = 81–64
5+x = 17
x = 12
1) Ta có : \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
=> x + 1 = 0
=> x = - 1
b) \(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)
=> \(\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+1}{2009}+1\right)\)
=> \(\frac{x+2010}{2006}+\frac{x+2010}{2007}=\frac{x+2010}{2008}+\frac{x+2010}{2009}\)
=> \(\left(x+2010\right)\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)
Vì \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)
=> x + 2010 = 0
=> x = -2010
c) \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)
\(\Rightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)=\left(\frac{x+1975}{75}-1\right)+\left(\frac{x+1969}{69}-1\right)\)
=> \(\frac{x+1900}{45}+\frac{x+1900}{54}=\frac{x+1900}{75}+\frac{x+1900}{69}\)
=> \(\left(x+1900\right)\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)
=> \(x+1900=0\left(\text{Vì }\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\ne0\right)\)
=> x = -1900
d) \(\frac{x+2008}{10}+\frac{x+2010}{9}=\frac{x+2012}{8}+\frac{x+2014}{7}\)
=> \(\left(\frac{x+2008}{10}+2\right)+\left(\frac{x+2010}{9}+2\right)=\left(\frac{x+2012}{8}+2\right)+\left(\frac{x+2014}{7}+2\right)\)
=> \(\frac{x+2028}{10}+\frac{x+2028}{9}=\frac{x+2028}{8}+\frac{x+2028}{7}\)
=> \(\left(x+2028\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\right)=0\)
=> x + 2028 = 0 \(\left(\text{Vì }\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\ne0\right)\)
=> x = -2028
1) Ta có: \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
+ TH1: \(x+1=0\)\(\Leftrightarrow\)\(x=-1\)
+ TH2: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}=0\)
Vì \(\hept{\begin{cases}\frac{1}{10}>\frac{1}{13}\\\frac{1}{11}>\frac{1}{14}\\\frac{1}{12}>0\end{cases}}\)\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)
\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)
mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}=0\)
\(\Rightarrow\)Phương trình trên vô nghiệm
Vậy \(x=-1\)
2) Ta có: \(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)
\(\Leftrightarrow\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)-\left(\frac{x+2}{2008}+1\right)-\left(\frac{x+1}{2009}+1\right)=0\)
\(\Leftrightarrow\frac{x+2010}{2006}+\frac{x+2010}{2007}-\frac{x+2010}{2008}-\frac{x+2010}{2009}=0\)
\(\Leftrightarrow\left(x+2010\right).\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)
+ TH1: \(x+2010=0\)\(\Leftrightarrow\)\(x=-2010\)
+ TH2: \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}=0\)
Vì \(\hept{\begin{cases}\frac{1}{2006}>\frac{1}{2008}\\\frac{1}{2007}>\frac{1}{2009}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{2006}+\frac{1}{2007}>\frac{1}{2008}+\frac{1}{2009}\)
\(\Rightarrow\)\(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>0\)
mà \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}=0\)
\(\Rightarrow\)Phương trình trên vô nghiệm
Vậy \(x=-2010\)
3) Ta có: \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)
\(\Leftrightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)-\left(\frac{x+1975}{75}-1\right)-\left(\frac{x+1969}{69}-1\right)=0\)
\(\Leftrightarrow\frac{x+1900}{45}+\frac{x+1900}{54}-\frac{x+1900}{75}-\frac{x+1900}{69}=0\)
\(\Leftrightarrow\left(x+1900\right).\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)
+ TH1: \(x+1900=0\)\(\Leftrightarrow\)\(x=-1900\)
+ TH2: \(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}=0\)
Vì \(\hept{\begin{cases}\frac{1}{45}>\frac{1}{75}\\\frac{1}{54}>\frac{1}{69}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{45}+\frac{1}{54}>\frac{1}{75}+\frac{1}{69}\)
\(\Rightarrow\)\(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}>0\)
mà \(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}=0\)
\(\Rightarrow\)Phương trình trên vô nghiệm
Vậy \(x=-1900\)
4) Ta có: \(\frac{x-99}{5}+\frac{x-97}{7}=\frac{x-95}{9}+\frac{x-93}{11}\)
\(\Leftrightarrow\left(\frac{x-99}{5}-1\right)+\left(\frac{x-97}{7}-1\right)-\left(\frac{x-95}{9}-1\right)-\left(\frac{x-93}{11}-1\right)=0\)
\(\Leftrightarrow\frac{x-104}{5}+\frac{x-104}{7}-\frac{x-104}{9}-\frac{x-104}{11}=0\)
\(\Leftrightarrow\left(x-104\right).\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)=0\)
+ TH1: \(x-104=0\)\(\Leftrightarrow\)\(x=104\)
+ TH2: \(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}=0\)
Vì \(\hept{\begin{cases}\frac{1}{5}>\frac{1}{7}\\\frac{1}{9}>\frac{1}{11}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{5}+\frac{1}{7}>\frac{1}{9}+\frac{1}{11}\)
\(\Rightarrow\)\(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}>0\)
mà \(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}=0\)
\(\Rightarrow\)Phương trình trên vô nghiệm
Vậy \(x=104\)
5) Ta có: \(\frac{x+2008}{10}+\frac{x+2010}{9}=\frac{x+2012}{8}+\frac{x+2014}{7}\)
\(\Leftrightarrow\left(\frac{x+2008}{10}+2\right)+\left(\frac{x+2010}{9}+2\right)-\left(\frac{x+2012}{8}+2\right)-\left(\frac{x+2014}{7}+2\right)=0\)
\(\Leftrightarrow\frac{x+2028}{10}+\frac{x+2028}{9}-\frac{x+2028}{8}-\frac{x+2028}{7}=0\)
\(\Leftrightarrow\left(x+2028\right).\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\right)=0\)
+ TH1: \(x+2028=0\)\(\Leftrightarrow\)\(x=-2028\)
+ TH2: \(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}=0\)
Vì \(\hept{\begin{cases}\frac{1}{10}< \frac{1}{8}\\\frac{1}{9}< \frac{1}{7}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}< \frac{1}{8}+\frac{1}{7}\)
\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}< 0\)
mà \(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}=0\)
\(\Rightarrow\)Phương trình trên vô nghiệm
Vậy \(x=-2028\)
Chúc bn hok tốt nha
\(\left(5-x\right)+\left(7-x\right)+\left(9-x\right)+...+\left(95-x\right)+\left(97-x\right)=47\times45\)
\(5-x+7-x+9-x+...+95-x+97-x=2115\)
\(\left(5+7+9+...+95+97\right)-\left(x+x+x+...+x+x\right)=2115\)
Đặt \(A=5+7+9+...+95+97\)
Số số hạng của A (hay số lần x) là:
\(\left(97-5\right):2+1=47\)(số)
Tổng của A là:
\(\dfrac{\left(5+97\right)\times47}{2}=2397\)
\(\Rightarrow2397-47x=2115\)
\(\Rightarrow47x=282\)
\(\Rightarrow x=6\)
Vậy x = 6
#kễnh
\(\left(5-x\right)+\left(7-x\right)+...+\left(97-x\right)=47\cdot45\)
\(5-x+7-x+...+97-x=2115\)
\(\left(5+7+...+97\right)-\left(x+x+...+x\right)=2115\)
Số phần tử của phần bị trừ và phần hiệu: \(\dfrac{\left(97-5\right)}{2}+1=47\)
\(\left(97+5\right)\cdot\dfrac{47}{2}-47x=2115\)
\(2397-47x=2115\)
\(47x=2397-2115=282\)
\(x=282:47=6\)