Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{5}+\sqrt{3}+\sqrt{2}\right).\left(\sqrt{5}+\sqrt{2}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2\)
\(=7+2\sqrt{10}-3\)
\(=4+2\sqrt{10}\)
- √12-√27+√3
- (√12-2√75).√3
- √252-√700+√7008-√448
- √3.(√12+√27-√3)
- (√2.3√3-5√6):√54
a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\frac{10}{1}=10\)
mấy câu còn lại bạn tự làm nốt nhé mk ban rồi
c) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=3-\sqrt{6}+2\sqrt{6}-3\)
\(=\sqrt{6}\)
d) Đặt \(D=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(\Leftrightarrow D^2=2-\sqrt{3}+2+\sqrt{3}+2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(\Leftrightarrow D^2=4+2\sqrt{4-3}\)
\(\Leftrightarrow D^2=6\)
\(\Leftrightarrow D=\sqrt{6}\) (Vì D > 0)
e) \(E=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)
\(\Leftrightarrow E^2=\frac{3-\sqrt{5}}{3+\sqrt{5}}+\frac{3+\sqrt{5}}{3-\sqrt{5}}-2\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}\cdot\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)
\(\Leftrightarrow E^2=\frac{9-6\sqrt{5}+5+9+6\sqrt{5}+5}{9-5}-2\sqrt{1}\)
\(\Leftrightarrow E^2=7-2=5\)
\(\Leftrightarrow E=\sqrt{5}\) (Vì E >0)
f) \(\left(\frac{1}{3-\sqrt{5}}-\frac{1}{3+\sqrt{5}}\right):\frac{5-\sqrt{5}}{\sqrt{5}-1}\)
\(=\frac{3+\sqrt{5}-3+\sqrt{5}}{9-5}:\sqrt{5}\)
\(=\frac{2\sqrt{5}}{4}\cdot\frac{1}{\sqrt{5}}\)
\(=\frac{1}{2}\)
\(5\sqrt{x}-\frac{\left(x+10\sqrt{x}+25\right)\left(\sqrt{x}-5\right)}{x-25}=5\sqrt{x}-\frac{\left(\sqrt{x}+5\right)^2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=5\sqrt{x}-\left(\sqrt{x}+5\right)=4\sqrt{x}-5\)
\(\frac{\sqrt{x^2-4x+4}}{x-2}=\frac{\sqrt{\left(x-2\right)^2}}{x-2}=\frac{\left|x-2\right|}{x-2}=\orbr{\begin{cases}\frac{x-2}{x-2}\left(x>2\right)\\\frac{2-x}{x-2}\left(x< 2\right)\end{cases}=\orbr{\begin{cases}1\left(x>2\right)\\-1\left(x< 2\right)\end{cases}}}\)