Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(x^2=121\)
\(\Rightarrow\orbr{\begin{cases}x^2=11^2\\x^2=\left(-11\right)^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=11\\x=-11\end{cases}}\)
Vậy x = 11 hoặc x = -11
+) \(2^{x+3}=1024\)
\(\Rightarrow2^{x+3}=2^{10}\)
\(\Rightarrow x+3=10\)
\(\Rightarrow x=10-3\)
\(\Rightarrow x=7\)
Vậy x = 7
+) \(5^{x+1}=625\)
\(\Rightarrow5^{x+1}=5^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=4-1\)
\(\Rightarrow x=3\)
Vậy x = 3
_Chúc bạn học tốt_
a) 305 - 5x = 290
5.(61-x) = 290
61-x = 58
x = 3
b) (3x - 24) .25 = 26
3x - 24 = 2
3x = 18
x=6
c) 8 + 3.(x-5)2 = 35
3.(x-5)2 = 27
(x-5)2 = 9 = 32 = (-3)2
=> x - 5 = 3 => x = 8
x-5 = - 3 => x = 2
KL:>.
d) 21 chia hết cho x - 2
\(\Rightarrow x-2\inƯ_{\left(21\right)}=\left\{\pm1;\pm3;\pm7;\pm21\right\}.\)
..
rùi bn tự lập bảng xét giá trị nhé
a,5mũ 36=(5mũ3)mũ12=125 mũ12
11^24=(11^2)12=121^12
vì 121<125 nên 5^36>11^24
a, \(390-\left(x-7\right)=13^2:12\)
\(390-\left(x-7\right)=\) \(\dfrac{169}{12}\)
\(x-7=390-\dfrac{169}{12}\)
\(x-7=\dfrac{4511}{12}\)
\(x=\dfrac{4511}{12}+7\)
\(x=\dfrac{4595}{12}\)
Vậy ...
b, \(\left(x-35.2^2\right):7=3^3-24\)
\(\left(x-35.4\right):7=27-24\)
\(\left(x-140\right):7=3\)
\(\Leftrightarrow\left(x-140\right)=3.7\)
\(\Leftrightarrow x-140=21\)
\(\Leftrightarrow x=161\)
Vậy .....
c) \(x-6:2-\left(4^2.3-24\right):2:6=3\)
\(x-3-\left(16.3-24\right):2:6=3\)
\(x-3-\left(48-24\right):2:6=3\)
\(x-3-24:2:6=3\)
\(x-3-2=3\)
\(x=3+2+3\)
\(x=8\)
Vậy ......
d) \(4x-5=5+5^2+5^3+.....+5^{99}\)
Đặt :
\(A=5+5^2+.........+5^{99}\)
\(\Leftrightarrow5A=5^2+5^3+..........+5^{100}\)
\(\Leftrightarrow5A-A=\left(5^2+5^3+......+5^{100}\right)-\left(5+5^2+....+5^{99}\right)\)
\(\Leftrightarrow4A=5^{100}-5\)
\(\Leftrightarrow A=\dfrac{5^{100}-5}{4}\)
\(\Leftrightarrow4x+5=\dfrac{5^{100}-5}{4}\)
Đến đây thì sao nữa nhỉ ?
e) \(\left(2x-1\right)^4=625\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^4=5\\\left(2x-1\right)^4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy ....