K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

16 000 000 000 000 nhé

~HT~

18 tháng 11 2021
=16000000000000 4×4=16 và thêm các chữ số 0của 2 thừa số
4 tháng 2 2020

a/ \(-12\left(x-5\right)+7\left(3-x\right)=5\)

\(< =>-12x+60+21-7x=5\)

\(< =>-19x+81=5\)

\(< =>-19x=-76\)

\(< =>x=\frac{76}{19}\)

b/ 30(x+2)-6(x-5)-24x=100

<=>30x + 60 - 6x + 30 - 24x =100

<=> 90=100( vô lý)

c/ \(\left(x-1\right)\left(x^2+1\right)=0\)

\(< =>\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}}< =>\hept{\begin{cases}x=1\\x^2=-1\left(voly\right)\end{cases}}\)

d/ làm rồi mà

4 tháng 2 2020

a. \(-12.\left(x-5\right)+7.\left(3-x\right)=5\)

             \(-12x+60+21-7x=5\)

                                    \(-19x+81=5\)

                                                \(-19x=-76\)

                                                         \(x=4\)

b. \(30.\left(x+2\right)-6.\left(x-5\right)-24x=100\)

            \(30x+60-6x+30-24x=100\)

\(\left(30x-6x-24x\right)+\left(60+30\right)=100\)

                                                                 \(90=100\)(vô lí)

                                                              \(\Rightarrow x=\varnothing\)

c. \(\left(x-1\right)\left(x^2+1\right)=0\)

 \(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x^2=-1\left(loại\right)\end{cases}}}\)

 \(\Rightarrow x=1\)

Câu d) chính là câu a) :D

22 tháng 2 2020

câu B

a: =>10x=25

hay x=2,5

b: =>3x=7,65-3,15=4,5

hay x=1,5

GV
4 tháng 5 2017

a) \(\int\left(x+\ln x\right)x^2\text{d}x=\int x^3\text{d}x+\int x^2\ln x\text{dx}\)

\(=\dfrac{x^4}{4}+\int x^2\ln x\text{dx}+C\) (*)

Để tính: \(\int x^2\ln x\text{dx}\) ta sử dụng công thức tính tích phân từng phần như sau:

Đặt \(\left\{{}\begin{matrix}u=\ln x\\v'=x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u'=\dfrac{1}{x}\\v=\dfrac{1}{3}x^3\end{matrix}\right.\)

Suy ra:

\(\int x^2\ln x\text{dx}=\dfrac{1}{3}x^3\ln x-\dfrac{1}{3}\int x^2\text{dx}\)

\(=\dfrac{1}{3}x^3\ln x-\dfrac{1}{3}.\dfrac{1}{3}x^3\)

Thay vào (*) ta tính được nguyên hàm của hàm số đã cho bằng:

(*) \(=\dfrac{1}{3}x^3-\dfrac{1}{3}x^3\ln x+\dfrac{1}{9}x^3+C\)

\(=\dfrac{4}{9}x^3-\dfrac{1}{3}x^3\ln x+C\)

GV
4 tháng 5 2017

b) Đặt \(\left\{{}\begin{matrix}u=x+\sin^2x\\v'=\sin x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u'=1+2\sin x.\cos x\\v=-\cos x\end{matrix}\right.\)

Ta có:

\(\int\left(x+\sin^2x\right)\sin x\text{dx}=-\left(x+\sin^2x\right)\cos x+\int\left(1+2\sin x\cos^2x\right)\text{dx}\)

\(=-\left(x+\sin^2x\right)\cos x+\int\cos x\text{dx}+2\int\sin x.\cos^2x\text{dx}\)

\(=-\left(x+\sin^2x\right)\cos x+\sin x-2\int\cos^2x.d\left(\cos x\right)\)

\(=-\left(x+\sin^2x\right)\cos x+\sin x-2\dfrac{\cos^3x}{3}+C\)

21 tháng 8 2020

mơn a haha

21 tháng 8 2020

a) 72 x 212 + 27 x 121 + 121

= 72 x 212 + 27 x 121 + 121

= 72 x 212 + 27 x 121 + 121 x 1

= 72 x 212 + (27 + 1) x 121

= 72 x 212 + 28 x 121

= 72 x (121 + 91) + 28 x 121

= 72 x 121 + 72 x 91 + 28 x 121

= (72 + 28) x 121 + 72 x 91

= 100 x 121 + 72 x 91

= 12100 + 6552

= 18652 (anh thấy bài này sao ý)

b) (165 x 99 + 165) - ( 163 x 101 - 163)

= (165 x 99 + 165 x 1) - ( 163 x 101 - 163 x 1)

= [165 x (99 + 1)] - [163 x (101 - 1)]

= 165 x 100 - 163 x 100

= 16500 - 16300

= 200

c) 24 x 62 + 48 x 19

= 24 x 62 + (24 + 24) x 19

= 24 x 62 + 24 x 19 + 24 x 19

= 24 x (62 + 19 + 19)

= 24 x 100

= 2400

d) 24 x 76 + 48 x 12 - 20 x 100

= 24 x 76 + (24 + 24) x 12 - 20 x 100

= 24 x 76 + 24 x 12 + 24 x 12 - 20 x 100

= 24 x (76 + 12 + 12) - 20 x 100

= 24 x 100 - 20 x 100

= 100 x (24 - 20)

= 100 x 4

= 400

( nhớ tính lại xem đúng ko nha, anh lỡ có sai thì chết. Bài nào sai báo ngay cho anh )

HỌC TỐT oaoa

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
8 tháng 2 2017

Câu 2)

Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)

Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)

Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)

AH
Akai Haruma
Giáo viên
8 tháng 2 2017

Câu 3:

\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)

Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)

\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)

Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)