K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

các cặp số tổng của chúng bằng 12 là

      (1và11);(2và10);(3và9);(4và8);(5và7);(6và6)

các cặp số có tích bằng 35 là

      (5và7)

vậy    a thuộc { 5;7 }

          b thuộc {5;7}

vậy ta có các cặp số a;b để thỏa mãn mọi điều kiện là

           (a=5 và b=7);(a=7 và b=5)

còn lại bạn tự thay số mà tính nhé máy tính của mình không viết được số mũ mình cảm ơn

8 tháng 10 2019

mik vẫn chưa hiểu bn nak

24 tháng 7 2019

a) \(a^2+b^2=a^2+2ab+b^2-2ab\)

\(=\left(a+b\right)^2-2ab=5^2-2.6=25-12=13\)

24 tháng 7 2019

a) Vì \(a+b=5\Rightarrow\left(a+b\right)^2=25\)

                             \(\Rightarrow a^2+2ab+b^2=25\)

                               Mà ab= 6 

\(\Rightarrow a^2+18+b^2=25\)

\(\Rightarrow a^2+b^2=7\)

6 tháng 10 2019

a)\(a+b=-5\)

\(\Rightarrow\left(a+b\right)^2=25\)

\(\Leftrightarrow a^2+2ab+b^2=25\)

\(\Leftrightarrow a^2+12+b^2=25\)

\(\Leftrightarrow a^2+b^2=13\)

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=-5\left(13-6\right)=-35\)

6 tháng 10 2019

b) \(a-b=9\)

\(\Leftrightarrow\left(a-b\right)^2=81\)

\(\Leftrightarrow a^2-2ab+b^2=81\)

\(\Leftrightarrow a^2-44+b^2=81\)

\(\Leftrightarrow a^2+b^2=125\)

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=9\left(125+22\right)=1323\)

26 tháng 10 2016

ý a)

(a+b)^2=a^2+b^2+2ab

=> 529=a^2+b^2+246  => a^2+b^2=283

(a^2+b^2)^2=a^4+b^4+2.a^2.b^2

=> 80089=a^4+b^4+30258   => a^4+b^4=49831

(a^2+b^2)(a^4+b^4)=a^6+b^6+a^2.b^4+b^2.a^4=a^6+b^6+a^2.b^2.(a^2+b^2)

=> 14102173=a^6+b^6+15129.283  => a^6+b^6=9820666

còn lại bạn tự tính

26 tháng 10 2016

ý b)

(x+y)^3=x^3+y^3+3xy.(x+y)

suy ra x^3+y^3+3xy=1

a: \(=\dfrac{2^{36}}{2^{12}}=2^{24}\)

b: \(=3^{18}:\dfrac{3^2}{5^2}=3^{16}\cdot5^2\)

c: \(=-\dfrac{\left(a-b\right)^5}{\left(a-b\right)^3}=-\left(a-b\right)^2\)

d: \(\dfrac{\left(a-b\right)^7}{\left(b-a\right)^4}=\dfrac{\left(a-b\right)^7}{\left(a-b\right)^4}=\left(a-b\right)^3\)

29 tháng 10 2019

\(a^2+b^2=\left(a+b\right)^2-2ab=7^2-24=25\)

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4.12=1\)

\(\Rightarrow a-b=-1\)

\(\Rightarrow A=\left(-1\right)^5=?\)

\(B=\left(a^2+b^2\right)^2-2\left(ab\right)^2=25^2-2.12^2=?\)

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

Câu 1:

a) \((a+b)^3-3ab(a+b)=a^3+3a^2b+3ab^2+b^3-3ab(a+b)\)

\(=a^3+b^3+3ab(a+b)-3ab(a+b)\)

\(=a^3+b^3\)

Áp dụng: \(a^3+b^3=(a+b)^3-3ab(a+b)=(-5)^3-3.6(-5)=-35\)

b) \((a-b)^3+3ab(a-b)\)

\(=a^3-3a^2b+3ab^2-b^3+3ab(a-b)\)

\(=a^3-b^3-3ab(a-b)+3ab(a-b)\)

\(=a^3-b^3\)

Áp dụng:

\(a^3-b^3=(a-b)^3+3ab(a-b)=(-5)^3+3(-6)(-5)=-35\)

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

Câu 2:

a) Vì \(x^2\geq 0, \forall x\Rightarrow A=4x^2+3\geq 4.0+3=3\)

Vậy GTNN của $A$ là $3$ tại $x^2=0$ hay $x=0$

b)

\(B=2x^2+2x+2xy+y^2+3=(x^2+2x+1)+(x^2+2xy+y^2)+2\)

\(=(x+1)^2+(x+y)^2+2\)

\((x+1)^2\geq 0; (x+y)^2\geq 0, \forall x,y\in\mathbb{R}\)

\(\Rightarrow B\geq 0+0+2=2\)

Vậy GTNN của $B$ là $2$ tại \(\left\{\begin{matrix} (x+1)^2=0\\ (x+y)^2=0\end{matrix}\right.\Leftrightarrow x=-1; y=1\)

8 tháng 11 2017

2\

a3+4a2-7a-10

= a3-2a2+6a2-12a+5a-10

=a2(a-2) +6a(a-2) +5(a-2)

= (a-2)(a2+6a+5)

= (a-2)(a+1)(a+5)

4\

(a2+a)2+4(a2+a)-12

= (a2+a)2+4(a2+a)+4-16

= (a2+a+2)2-16

= (a2+a+6)(a2+a-2)

5/

(x2+x+1)(x2+x+2)-12

đặt x2+x+1=a

⇒ a(a+1)-12

= a2+a-12

= a2-3a+4a-12

= a(a-3)+4(a-3)

= (a-3)(a+4)

⇒ (x2+x-2)(x2+x+5)

6\

x8+x+1

= x8+x7+x6-x7-x6-x5+x5+x4+x3-x4-x3-x2+x2+x+1

= x6(x2+x+1) - x5(x2+x+1) +x3(x2+x+1)-x2(x2+x+1)+(x2+x+1)

= (x2+x+1)(x6-x5+x3+x2+1)

7\

x10+x5+1

= x10+x9+x8-x9-x8-x7+x7+x6+x5-x6-x5-x4+x5+x4+x3-x3-x2-x+x2+x+1

= x8(x2+x+1)-x7(x2+x+1)+x5(x2+x+1)-x4(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1)

= (x2+x+1)(x8-x7+x5-x4+x3-x+1)