Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{450}{x+30}-\dfrac{450}{x}=4\left(đk:x\ne0,x\ne-30\right)\)
\(\Leftrightarrow\dfrac{450x-450x-13500}{x\left(x+30\right)}=4\)
\(\Leftrightarrow\dfrac{-13500}{x\left(x+30\right)}=4\)
\(\Leftrightarrow4x^2+120x=-13500\)
\(\Leftrightarrow4\left(x+15\right)^2=-12600\)
\(\Leftrightarrow\left(x+15\right)^2=-3150\)(vô lý)
Vậy \(x\in\varnothing\)
\(\dfrac{450}{x+30}-\dfrac{450}{x}=4\)
<=> \(\dfrac{450x}{x\left(x+30\right)}-\dfrac{450\left(x+30\right)}{x\left(x+30\right)}=\dfrac{4x\left(x+30\right)}{x\left(x+30\right)}\)
<=> 450x - 450(x + 30) = 4x(x + 30)
<=> 450x - 450x - 480 = 4x2 + 120x
<=> 4x2 - 120x - 480 = 0
<=> x = 33, 57
Áp dụng định lý Bê-du, ta có :
Khi \(P\left(x\right)\)chia hết cho \(x-2\Rightarrow P\left(2\right)=0\)
\(\Rightarrow6.2^5+a.2^4+b.2^3+2^2+c.2+450=0\)
\(\Rightarrow192+16a+8b+4+2c+450=0\)
\(\Rightarrow16a+8b+2c=-646\)
\(\Rightarrow8a+4b+c=-323\)
Khi \(P\left(x\right)\)chia hết cho \(x-3\Rightarrow P\left(3\right)=0\)
\(\Rightarrow P\left(3\right)=6.3^5+a.3^4+b.3^3+3^2+3c+450=0\)
\(\Rightarrow1458+81a+27b+9+3c+450=0\)
\(\Rightarrow81a+27b+3c=-1917\)
\(\Rightarrow27a+9b+c=-639\)
Khi \(P\left(x\right)\)chia hết cho \(x-5\Rightarrow P\left(5\right)=0\)
Làm tương tự, có :
\(125a+25b+c=-3845\)
Bạn tự xét phần tiếp theo vì ở đây đã có 3 dữ kiện để tìm a, b , c rồi.
1:
a: \(\sqrt{36}-\sqrt{100}=6-10=-4\)
b: Để \(\sqrt{\dfrac{2}{2x-1}}\) có nghĩa thì \(\dfrac{2}{2x-1}>=0\)
=>2x-1>0
=>x>1/2
2:
a: \(A=\dfrac{\left(15\sqrt{180}-5\sqrt{200}-3\sqrt{450}\right)}{\sqrt{10}}\)
\(=15\sqrt{\dfrac{180}{10}}-5\sqrt{\dfrac{200}{10}}-3\sqrt{\dfrac{450}{10}}\)
\(=15\sqrt{18}-5\sqrt{20}-3\sqrt{45}\)
\(=45\sqrt{2}-10\sqrt{5}-9\sqrt{5}\)
\(=45\sqrt{2}-19\sqrt{5}\)
b: \(B=\sqrt{32}-\sqrt{50}-16\sqrt{\dfrac{1}{8}}\)
\(=4\sqrt{2}-5\sqrt{2}-\dfrac{16}{\sqrt{8}}\)
\(=-\sqrt{2}-2\sqrt{8}=-\sqrt{2}-4\sqrt{2}=-5\sqrt{2}\)
- \(\frac{\sqrt{27\left(1-\sqrt{3}\right)^4}}{3\sqrt{15}}=\frac{\sqrt{3.3^2\left(1-\sqrt{3}\right)^4}}{3\sqrt{15}}=\frac{3\left(1-\sqrt{3}\right)^2}{3\sqrt{15}}=\frac{1-2\sqrt{3}+3}{\sqrt{15}}=\frac{4-2\sqrt{3}}{\sqrt{15}}\)
- \(=\frac{\sqrt{10}\left(12-8\sqrt{2}+7.15\sqrt{2}\right)}{\sqrt{10}}=12+97\sqrt{2}\)
- \(=\sqrt{\frac{x.x\sqrt{y}}{y}}=\sqrt{\frac{x^2}{\sqrt{y}}}=\frac{|x|}{\sqrt[4]{y}}\)
a) (15 50 + 5 200 - 3 450 ): 10
= 15 5 + 5 20 - 3 45
= 15 5 + 10 5 - 9 5
= 16 5
\(\frac{450}{x+5}+1=\frac{450}{x}\)
\(\Leftrightarrow\frac{450x}{x\left(x+5\right)}+\frac{x\left(x+5\right)}{x\left(x+5\right)}=\frac{450\left(x+5\right)}{x\left(x+5\right)}\)
Khử mẫu : \(\Leftrightarrow450x+x^2+5x=450x+2250\)
\(\Leftrightarrow455x+x^2-450x-2250=0\)
\(\Leftrightarrow x^2-5x-2250=0\)delta nốt hộ