K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2020

Tại sao GTLN của hàm số nhỏ nhất khi ba cái dòng cuối như vậy vậy ạ?

NV
22 tháng 6 2020

Xét hàm: \(f\left(x\right)=x^3-3x+2m-1\) trên \(\left[0;2\right]\)

\(f'\left(x\right)=3x^2-3=0\Rightarrow x=1\)

\(f\left(0\right)=2m-1\) ; \(f\left(1\right)=2m-3\) ; \(f\left(2\right)=2m+1\)

\(y=\left|f\left(x\right)\right|\)

\(\Rightarrow y_{max}=\left[{}\begin{matrix}\left|2m-3\right|\\\left|2m+1\right|\end{matrix}\right.\)

GTLN của hàm số là nhỏ nhất khi: \(\left\{{}\begin{matrix}2m-3< 0\\2m+1>0\\3-2m=2m+1\end{matrix}\right.\) \(\Rightarrow m=\frac{1}{2}\)

19 tháng 5 2019

Chọn A

Kiến thức bổ sung: Dạng toán tìm GTLN, GTNN của hàm số y = |u(x)|  trên đoạn  [a;b]

Gọi M, m lần lượt là GTLN, GTNN của hàm số u(x) trên đoạn [a;b]

Đặt: 

Ta có: 

Suy ra: 

TH1: (loại)

(vì ko thỏa mãn giả thiết Aa = 12)

TH2: 

Từ giả thiết: Aa = 12 

TH3: 

Từ giả thiết: Aa = 12 

Kết hợp các trường hợp suy ra: S = {-4;4}

Vậy tổng các phần tử của bằng: (-4) + 4 = 0. 

13 tháng 11 2019

14 tháng 11 2017

+ Đạo hàm f'(x) =  2 - m x 2 ( x + 1 ) x ( x + 1 )

f'(x) = 0  ⇒ x   =   2 m     ↔   x   =   m 2 4   ∈ [   0 ; 4 ] ,  ∀ m > 1

+ Lập bảng biến thiên, ta kết luận được  

m a x [ 0 ; 4 ]   f ( x )   =   f ( 4 m 2 )   =   m 2   + 4

+ Vậy ta cần có  m 2 + 4   <   3  

↔   m < 5   →   m > 1     m   ∈ ( 1 ; 5 )

Chọn C.

5 tháng 4 2019

Chọn B.

Ta có 

Do đó hàm số đồng biến trên [0;2].

Suy ra 

Do đó 4M – 2m = 6.

28 tháng 9 2019

Chọn A.

6 tháng 4 2018

Điều kiện : x≠ -m.

+  Ta có:   y '   =   x 2 + 2 m x   + m 2 - 1 ( x + m ) 2 =   ( x + m ) 2 - 1 ( x + m ) 2

  y ' = 0 ↔ ( x + m ) 2   =   1   ↔   x   =   1 - m   >   - m   ∨   x   =   - 1 - m   <   - m

 

+ Do hệ số x2 là số dương và theo yêu cầu đề bài ta có bảng biến thiên như sau:

+ Hàm số đạt giá trị nhỏ nhất tại x0=1-m ∈ (0; 2) nên 0< -m+1 < 2

Hay -1< m< 1.

+ Kết hợp điều kiện để hàm số liên tục trên [0; 2] thì 

Ta được 0<m<1

Chọn A

25 tháng 5 2018

Chọn A.

TXĐ: D = R.

 có 2 nghiệm phân biệt 

BBT:

Vậy hàm số đạt giá trị lớn nhất là 

YCBT 

22 tháng 2 2017

Chọn C

24 tháng 6 2019

Chọn C

Xét hàm số f(x) =  x 3 - 3 x + m .

Để GTNN của hàm số  y =  x 3 - 3 x + m 2  trên đoạn [-1;1]  bằng 1 thì   hoặc 

Ta có 

=> f(x) nghịch biến trên [-1;1]

Suy ra  và 

Trường hợp 1: 

Trường hợp 2: 

Vậy tổng các giá trị của tham số m là 0.