Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 4 + 42 + 43 + ... + 435 + 436
= (4 + 42 + 43) + ... + (434 + 435 + 436)
= 84 + ... + 433(4 + 42 + 43)
= 84 + ... + 433 . 84
= 84 . (1 + ... + 433) \(⋮\)42
Vì 84 \(⋮\)42
ta có
\(1+3+3^2+..+3^{2000}=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+..+\left(3^{1998}+3^{1999}+3^{2000}\right)\)
\(=13.1+13\cdot3^3+..+13\cdot3^{1998}\) chia hết cho 13
tương tự
\(1+4+4^2+..+4^{2012}=\left(1+4+4^2\right)+..+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21.1+21\cdot4^3+..+21.4^{2010}\) chia hết cho 21
Bài 1 :
chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42
ta thấy 42 = 2 x 3 x 7
A chia hết 42 suy ra A phải chia hết cho 2;3;7
mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2 (1)
số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )
ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )
suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )
A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3
A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3
suy ra A chia hết cho 3 ( 2 )
ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )
suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )
A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )
A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7
A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7
suy ra A chia hết cho 7 (3)
từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7
suy ra A chia hết cho 42 ( điều phải chứng minh )
Ta co: 1x2x3x4x5x6 chia het cho 2( co chua thua so 2)
Mà 35 ko chia hết cho 2 nên:
1x2x3x4x5x6-35 ko chia het cho 2
1x2x3x4x5x6 chia hết cho 5( co chua thua so 5)
35 chia het cho 5 nen 1x2x3x4x5x6 - 35 chia het cho 5
b) Tuong tu nha ban
mik di
a) /-28/ + (-42) = 28 +(-42) = -14
b) đặt S = 76+75+74+73+72+7
7S = 7^7+7^6+7^5+7^4+7^3+7^2
7S-S= (7^7+7^6+7^5+7^4+7^3+7^2) - ( 76+75+74+73+72+7)
6S = 77-7 = 823536
S = 823536:6 =137256
a^0 + a^1 + a^2 + a^3 + .. a^n = (a^(n+1) - 1)/(n-1)
=> A = 2^2011 - 2
* A = 2*(2^2010-1) chia hết cho 2
* Ta có 2^6 đồng dư 1 ( mod 21 )
=> (2^6)^335 đồng dư 1^335 = 1 ( mod 21)
=> 2^2010 đồng dư 1 ( mod 21 )
=> 2^2010 -1 chia hết cho 21
Mà (21;2)=1
=> A chia hết cho 42
a) 136 + 420 có chữ số tận cùng là 6 chia hết cho 2 và không chia hết cho 5
b) 625 - 450 có chữ số tận cùng là 5 chia hết cho 5 và không chia hết cho 2
c) 1.2.3.4.5.6 + 42
Vì 5.6 có tận cùng = 0 => 1.2.3.4.5.6 có tận cùng = 0
=> 1.2.3.4.5.6 + 42 có tận cùng = 2 chia hết cho 2 và không chia hết cho 5.
d) tương tự câu c, 1.2.3.4.5.6 có tận cùng = 0
=> 1.2.3.4.5.6 - 35 có tận cùng = 5 chia hết cho 5 và không chia hết cho 2
\(42:\frac{3}{4}=\frac{42}{1}\times\frac{4}{3}=\frac{168}{3}=56\)