Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng công thức (a-b)^5= a^5 - 5a^4b + 10a^3b^2 - 10a^2b^3 + 5ab^4 - b^5
Xem nào...hmm...
\(D=x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left[\left(x+y\right)^2-2xy\right]^2+2.\left(xy\right)^2\)
Thay x + y = 4 , xy = 2 vào ta được ...
\(E=\left(x^4+y^4\right)\left(x+y\right)-xy\left(x^3+y^3\right)\)
\(=D\left(x+y\right)-2\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=4D-8\left[\left(x+y\right)^2-3xy\right]\)
Thay lần lượt D ở câu trên, x + y = 4, xy = 3 vào...
tìm x biết :
a,(2x-3)^2 =(x+ 5)^2
b,x^2(x-1) -4x^2 +8x -4 =0
c, (x-4)^2 -36 =0
giúp mik nha mik đang gấp
a, (2x-3)^2=(x+5)^2
2x-3=x+5
2x-3-x-5=0
x-8=0
x=8
b, x^2(x-1)-4x^2+8x-4=0
x^2(x-1)-(4x^2-8x+4)=0
x^2(x-1)-4(x^2-2x+1)=0
x^2(x-1)-4(x-1)^2=0
(x-1)(x^2-4)(x-1)=0
(x-1)(x-2)(x+2)(x-1)=0
=>x-1=0=>x=1
=>x-2=0=>x=2
=>x+2=0=>x=-2
=>x-1=0=>x=1
Vậy : x=1 ;x=2 và x=-2
c, (x-4)^2-36=0
(x-4)^2-6^2=0
(x-4-6)(x-4+6)=0
(x-10)(x+2)=0
=>x-10=0=>x=10
=>x+2=0=>x=-2
Vậy : x=10 và x=-2
k đúng cho mình nhé bạn !
a)\(x\left(x-3\right)-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
b)\(\left(3x-5\right)\left(5x-7\right)+\left(5x+1\right)\left(2-3x\right)=4\)
\(\Leftrightarrow15x^2-46x+35-15x^2+7x+2-4=0\)
\(\Leftrightarrow33-39x=0\Leftrightarrow33=39x\Leftrightarrow x=\frac{33}{39}\)
a) \(x\left(x-3\right)-2x+6=0\)
\(x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)
b) \((3x-5)(5x-7)+(5x+1)(2-3x)=4\)
\(15x^2-46x+35+10x-15x^2+2-3x-4=0\)
\(33-39x=0\)
\(3\left(11-13x\right)=0\)
\(11-13x=0\)
\(13x=11\)
\(x=\frac{11}{13}\)
Sửa đề (x + 5)2 - (x - 5)2 - 20x + 2
= x2 + 10x + 25 - x2 + 10x - 25 - 20x + 2
= 2
=> Biểu thức trên không phụ thuộc vào biến
Sửa đề :
(x + 5)2 - (x - 5)2 - 20x + 2
= x2 + 10x + 26 - x2 + 10x - 25 - 20x + 2
= 2
=> Biểu thức trên ko phụ thuộc vào biến.
4) (3x-2)(x-3)= 3x(x-3)-2(x-3)
=3x.x+3x.(-3)-2.x-2.(-3)
=\(3x^2\)-9x-4x+6
=\(3x^2\)+(-9x-4x)+6
=\(3x^2\)-13x+6
5) (2x+1)(x+3)=2x(x+3)+1(x+3)
=2x.x+2x.3+1.x+1.3
=\(2x^2\)+6x+1x+3
=\(2x^2\)+(6x+1x)+3
=\(2x^2\)+7x+3
6) (x-3)(3x-1)=x(3x-1)-3(3x-1)
=x.3x+x.(-1)-3.3x-3.(-1)
=\(3x^2\)-1x-9x+3
=\(3x^2\)+(-1x-9x)+3
=\(3x^2\)-10x+3
rút gọn biểu thức
A) \(x^2\)-(x+4)(x-1)=\(x^2\)- x(x-1)-4(x-1)
=\(x^2\)-x.x-x.(-1)-4.x-4.(-1)
=\(x^2\)-\(x^2\)+1x-4x+4
=(\(x^2-x^2\))+(1x-4x)+4
= -3x+4
B) x(x+2)-(x-2)(x+4)=x.x+x.2-x(x+4)+2(x+4)
=\(x^2+2x\)-x.x-x.4+2.x+2.4
=\(x^2+2x-x^2-4x+2x+8\)
=(\(x^2-x^2\))+(2x-4x+2x)+8
=8
tính giá trị biểu thức
A=3(x-2)-(2+x)(x-3)
=3.x+3.(-2)-2(x-3)-x(x-3)
=3x-6-2.x-2.(-3)-x.x-x(-3)
=3x-6-2x+6-\(x^2\)+3x
=(3x-2x+3x)+(-6+6)\(-x^2\)
=4x - \(x^2\)
thay x=-8 vào biểu thức thu gọn ta được:
4.(-8)- (-8)\(^2\)
= - 32 +64
= 32
B= x(3-x)-(1+x)(1-x)
=x.3+x.(-x)-1(1-x)-x(1-x)
=3x -\(x^2\)-1.1-1 .(-x)-x.1-x.(-x)
=3x\(-x^2\)-\(1^2\)+1x-1x+\(x^2\)
=(3x+1x-1x)+(\(-x^2+x^2\))-1
=3x-1
thay x=-5 vào biểu thức thu gọn ta được:
3.(-5)-1
=-15-1
=-16
Thu gọn biểu thức
4) (3x - 2) (x - 3)
= ( 3x2 - 2x ) - ( 3x x 3 - 2 x 3 )
= 3x2 - 2x - 3x x 3 + 2 x 3
= 3x2 - 2x - 9x + 6
= 3x2 - 11x + 6
5) (2x + 1) (x + 3)
= ( 2x2 + 1x ) + ( 6x + 3 )
= 2x2 + 1x + 6x + 3
= 2x2 + 7x + 3
6) (x - 3) (3x - 1)
= ( 3x2 - 9x ) - ( x - 3 )
= 3x2 - 9x - x + 3
= 3x2 - 10 + 3
Rút gọn biểu thức
A) x^2 - (x + 4) (x - 1)
= x2 - ( x2 + 4x ) - ( x + 4 )
= x2 - x2 - 4x - x - 4
= -5x - 4
B) x (x + 2) - (x - 2) (x + 4)
= x2 + 2x - ( x2 - 2x ) + ( 4x - 8 )
= x2 + 2x - x2 + 2x + 4x - 8
= 8x - 8
Tính giá trị biểu thức
A = 3 (x - 2) - (2 + x) (x - 3) tại x = - 8
Thế x = -8 vào, ta có :
= 3 ( -8 -2 ) - ( 2 + -8 ) ( -8 - 3 )
= 3 x ( -10 ) - ( - 6 ) ( -11 )
= -30 - 66
= -96
B = x (3 - x) - (1 + x) ( 1 - x) tại x = - 5
Thế x = - 5 vào, ta có :
= -5 ( 3 - -5 ) - ( 1+ -5 ) ( 1 - -5 )
= -5 x 8 - (-4) x 6
= - 40 - -24
= -40 + 24
= -16
100% đúng
hok tốt nha
Nhớ mình nha mình âm diểm rồi:
M=(x+2)(x+3)(x+4)(x+5)-24
M=(x2+3x+2x+6)(x2+5x+4x+20)-24
M=(x2+5x+6)(x2+9x+20)-24
M=x4+9x3+20x2+5x3 +14x+100x+6x2+54x+120-24
M=x4+14x3+26x2+168x+96
Đặt 4-x=a và x-2=b thì a+b=2
mà theo đề bài a^5+b^5=32
\(\Leftrightarrow\)(a^3+b^3)(a^2+b^2)-a^2b^2(a+b)=32
\(\Leftrightarrow\)(a+b)^3-3ab(a+b)*(a+b)^2-2ab-a^2*b^2*(a+b)=32
\(\Leftrightarrow\)(8-6ab)(4-2ab)-2(ab)^2=32
\(\Leftrightarrow\)12(ab)^2-40(ab)+32=32
\(\Leftrightarrow\)4ab(3ab-10)=0
\(\Rightarrow\)ab=0 hoặc ab=10/3
Nếu ab=0 thì avà sẽ là nghiệm của pt X^2-2X=0\(\Rightarrow\)X=0 hoặc X=2
\(\Rightarrow\)(a;b)=(0;2) v(2;0)
\(\Rightarrow\)x=4 hoặc x=2
Nếu ab=10/3 thì a,b sẽ là nghiệm của pt X^2-2X+10/3=0 ( phương trình vô nghiệm)
chúc bạn học tốt
Đặt 4 - x = a và x - 2 = b thì a + b = 2
Mà theo đề bài : a^5 + b^5 = 32
<=> (a^3 + b^3)(a^2 + b^2) - a^2b^2(a + b) = 32
<=> [(a + b)^3 - 3ab(a + b)].[(a + b)^2 - 2ab] - a^2.b^2.(a + b) = 32
<=> (8 - 6ab)(4 - 2ab) - 2(ab)^2 = 32
<=> 12(ab)^2 - 40(ab) + 32 = 32
<=> 4ab(3ab - 10) = 0
=> ab = 0 hoặc ab = 10/3
* Nếu ab = 0 thì a và b sẽ là nghiệm của pt : X^2 - 2X = 0 => X = 0 hoặc X = 2
=> (a ; b) = (0 ; 2) v (2 ; 0)
=> x = 4 hoặc x = 2
* Nếu ab = 10/3 thì a,b sẽ là nghiệm của pt : X^2 - 2X + 10/3 = 0 (Phương trình vô nghiệm)
S = {2 ; 4}