Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left|2x-5\right|+\left|7-2x\right|\ge\left|2x-5+7-2x\right|\forall x\)
\(\Leftrightarrow\left|2x-5\right|+\left|7-2x\right|\ge2\forall x\)
\(\Rightarrow A_{min}=2\)
a. ta có (2x-5)2 >= 0 với mọi x thuộc R
vậy 5 -(2x-5)2 <= 5
dấu = xảy ra khi (2x-5)2=0
vậy 2x-5=0
2x =5
x= 5/2=2,5
Vậy để B lớn nhất thì x=2,5
b. ta có | 2x-4| >= 0 với mọi x thuộc R
| 2x-6| >= 0 với mọi x thuộc R
vậy | 2x-4 |- |2x-6| >= 0
dấu = xảy ra khi |2x-4| và |2x-6| đều bằng 0
=> 2x-4=0 => 2x - 6=0
2x =4 2x =6
x=4/2=2 x= 6/2=3
/2x-7/>=0
/2x-6/>=0
/2x-5/>=0
suy ra /2x-7/+/2x-6/+/2x-5/>=0
đề nó =0 thì 2x-7=0 hoặc 2x-6=0 hoặc 2x-5=0
x thuộc 7/2;3;5/2
vậy để c nhỏ nhất =0 khi và chỉ khi x thuộc những gt trên
Ta có : |4 + 2x| ≥ 0 ∀x ∈ R
|2x - 2| ≥ 0 ∀x ∈ R
Nên A = |4 + 2x| + |2x - 2| ≥ 0 ∀x ∈ R
Vậy Amin = 0
Ta có :
\(\left(2x-1\right)^4\ge0\forall x\)
\(\Rightarrow5-\left(2x-1\right)^4\le5\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow\left(2x-1\right)^4=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(GTLN\)của D là 5 \(\Leftrightarrow x=\frac{1}{2}\)
Tham khảo nha !!!
\(A=\left|2x-5\right|+\left|7-2x\right|\)
Có \(\left|2x-5\right|\ge2x-5\)
\(\left|7-2x\right|\ge7-2x\)
=) \(\left|2x-5\right|+\left|7-2x\right|\ge\left(2x-5\right)+\left(7-2x\right)=2x-5+7-2x\)
=) \(A=\left|2x-5\right|+\left|7-2x\right|\ge2x-2x-5+7=2\)
Để \(A\)nhỏ nhất =) \(A=2\)
=) Dấu " = " xảy ra khi \(2x-5\ge0\)=) \(2x\ge5\rightarrow x\ge\frac{5}{2}=2,5\)
và \(7-2x\ge0\)=) \(2x\le7\rightarrow x\le\frac{7}{2}=3,5\)
=) \(2,5\le x\le3,5\)( Với \(x\in Q\))
Vậy với \(2,5\le x\le3,5\)thì \(A\)có giá trị nhỏ nhất = 2