Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=8cm\)
Vì BE là pg \(\dfrac{AB}{BC}=\dfrac{AE}{EC}\Rightarrow\dfrac{EC}{BC}=\dfrac{AE}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{EC}{BC}=\dfrac{AE}{AB}=\dfrac{AC}{AB+BC}=\dfrac{8}{16}=\dfrac{1}{2}\Rightarrow EC=5cm;AE=3cm\)
a: AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=25/7
=>BD=75/7cm; CD=100/7cm
b: BE là phân giác
=>AE/AB=CE/BC
=>AE/3=CE/5=(AE+CE)/(3+5)=20/8=2,5
=>AE=7,5cm; CE=12,5cm
Lời giải:
Vì $ABC$ là tam giác cân tại $A$ nên $AB=AC=15$ cm
Áp dụng tính chất tia phân giác:
$\frac{AE}{EC}=\frac{AB}{BC}=\frac{15}{10}=\frac{3}{2}$
$\Rightarrow \frac{AE}{AE+EC}=\frac{3}{5}$
$\Rightarrow \frac{AE}{AC}=\frac{AE}{15}=\frac{3}{5}$
$\Rightarrow AE=9$ (cm)
$EC=AC-AE=15-9=6$ (cm)
a) Xét \(\Delta BAC\)có phân giác BD (giả thiết).
\(\Rightarrow\frac{BA}{BC}=\frac{AD}{CD}\)(tính chất).
\(\Rightarrow\frac{BA}{BC+BA}=\frac{AD}{CD+AD}=\frac{AD}{AC}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{6}{10+6}=\frac{AD}{8}\)(thay số).
\(\Rightarrow\frac{6}{16}=\frac{AD}{8}\)
\(\Rightarrow AD=\frac{6}{16}.8=\frac{3}{8}.8=3\left(cm\right)\)
Do đó \(CD=AC-AD=8-3=5\left(cm\right)\)
Vậy \(AD=3cm,CD=5cm\)
A B C D E
Hình mik vẽ k đúng với câu b :D Chỉ minh họa thôi nhé !
a) Xét △ABC có AE là tia phân giác
\(\Rightarrow\frac{EB}{EC}=\frac{AB}{AC}\)
Vì AB = AD
\(\Rightarrow\frac{EB}{EC}=\frac{AD}{AC}\)
\(\Rightarrow\)AE // BD (Định lí Thales đảo)
b) Đổi : 120cm = 12 dm
Ta có : \(\frac{AB}{AC}=\frac{EB}{EC}\)
\(\Rightarrow\frac{EB}{AB}=\frac{EC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{EB}{AB}=\frac{EC}{AC}=\frac{EB+EC}{AB+AC}=\frac{BC}{8+12}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}EB=\frac{1}{2}.AB=\frac{1}{2}.8=4dm\\EC=\frac{1}{2}.AC=\frac{1}{2}.12=6dm\end{cases}}\)