K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

gọi x-1/2=y+3/4=z-5/6=k =>x=k+1/2; y=k-3/4; z=k+5/6

ta co: 5z-3x-4y=[5(k+5/6)]-[3(k+1/2)]-4[(k-3/4)]=[5k+25/6]-[3k+3/2]-[4k-3]=5k+25/6-3k-3/2-4k+3=(5k-3k-4k)+(25/6+3-3/2)=-2k+34/9=50

roi con la tu lam nha bye

24 tháng 7 2017

bộ định không làm bài tập về nhà à , thấy bài cái là lên hỏi

25 tháng 7 2017

có làm nhưng mà quên cách òi giúp cái coi

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

31 tháng 8 2016

a)Ta có:

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\left(2\right)\)

        Từ (1) và (2) suy ra:\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

    Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{96}{16}=6\)

\(\Rightarrow\begin{cases}\frac{x}{10}=6\\\frac{y}{15}=6\\\frac{z}{21}=6\end{cases}\)\(\Rightarrow\begin{cases}x=60\\y=90\\z=126\end{cases}\)

            Vậy x=60;y=90;z=126

31 tháng 8 2016

b)Vì \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{6}=\frac{y}{12}\left(1\right)\)

         \(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\left(2\right)\)

    Từ (1) và (2) suy ra:\(\frac{x}{6}=\frac{y}{12}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

  \(\Rightarrow\frac{x}{6}=\frac{y}{12}=\frac{z}{20}=\frac{2x}{12}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{12-36+20}=\frac{6}{-4}\)

\(\Rightarrow\begin{cases}\frac{x}{6}=-\frac{6}{4}\\\frac{y}{12}=-\frac{6}{4}\\\frac{z}{20}=-\frac{6}{4}\end{cases}\)\(\Rightarrow\begin{cases}x=-9\\y=-18\\z=-30\end{cases}\)

             Vậy x=-9;y=-18;z=-30

24 tháng 7 2015

x/2=y/3;y/2=z/5 => x/2=2y/6;3y/6=z/5 => x/4=y/6=z/15

adtcdtsbn:

x/4=y/6=z/15=x+y+z/4+6+15=50/25=2

suy ra : x/4=2=>x=4.2=8

y/6=2=>y=2.6=12

z/15=2 => z=15.2=30