Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 2 x 2 + 3 x 3 + 4 x 4 + 5 x 5 + 6 x 6 + 7 x 7 + 8 x 8 + 9 x 9 + 10 x 10
= 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100
= 385
1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9 + 10x10
= 1+4+9+16+25+36+49+64+81+100
=(81+9)+(64+16)+(49+1)+)36+4)+25+100
=90+80+50+40+25 +100
=385
Ta có:
\(\frac{1}{2x2}<\frac{1}{1.2}\)
\(\frac{1}{3x3}<\frac{1}{2.3}\)
\(...\)
\(\frac{1}{2015x2015}<\frac{1}{2014x2015}\)
\(\Rightarrow\frac{1}{2x2}+\frac{1}{3x3}+...+\frac{1}{2015x2015}<\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{2014x2015}\)
\(\Rightarrow\frac{1}{2x2}+\frac{1}{3x3}+...+\frac{1}{2015x2015}<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(\Rightarrow\frac{1}{2x2}+\frac{1}{3x3}+...+\frac{1}{2015x2015}<1-\frac{1}{2015}<1\)
\(\Rightarrow\)Đpcm
\(E=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{49.49}\)
Ta có \(\frac{1}{2.2}>\frac{1}{2.3}\)
\(\frac{1}{3.3}>\frac{1}{3.4}\)
...
\(\frac{1}{49.49}>\frac{1}{49.50}\)
=> \(E=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{49.49}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\frac{1}{2}-\frac{1}{50}=\frac{24}{50}=\frac{12}{25}=F\)
=> E > F
3x3=94x4=169x9=81\(3\cdot3=9\)
\(4\cdot4=16\)
\(9\cdot9=81\)