K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

(3x+2)2-(3x-2)2=5x+38

⇒(3x+2-3x+2)(3x+2+3x-2)=5x+38

⇒4.6x=5x+38

⇒19x=38

⇒x=2

Vậy...

12 tháng 4 2020

\(\left(3x+2\right)^2-\left(3x-2\right)^2=5x+38\)

\(\Leftrightarrow\left(9x^2+12x+4\right)-\left(9x^2-12x+4\right)=5x+38\)

\(\Leftrightarrow24x=5x+38\Leftrightarrow19x=38\Leftrightarrow x=\frac{38}{19}=2\)

Vậy $x=2$

24 tháng 8 2017

\(b.x^4+4x^2-5=x^4-x^2+5x^2-5\)

\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(x^2+5\right)\left(x^2-1\right)\)

\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)

\(c.x^3-19x-30=x^3-25x+6x-30\)

\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x+6\right)\)

\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

24 tháng 8 2017

tí nữa giải cho

5 tháng 11 2016

4a) \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+b^2+2ab\)

=> (a+b)^2=(a-b)^2+4ab

9 tháng 11 2016
  • 2x – x2 + 2 – x – (3x2 + 6x + 5x +10) = – 4x2 + 2
  • 2x – x2 + 2 – x – 3x2 – 6x – 5x – 10 = – 4x2 + 2 –10x = 10 x = – 1
  • 2x2 – 6x + x – 3 = 0

(x – 3)(2x + 1) = 0

x = 3 hay x = -1/2

4 tháng 11 2016

1.

a) \(\left(-2x^3\right)\)\(\left(x^2+5x-\frac{1}{2}\right)\) = \(-2x^5\)\(-10x^4\) \(+x^3\)

b) (\(6x^3-7x^2\)\(-x+2\))\(:\left(2x+1\right)\)=\(3x^2-5x+2\)

2.

a) 9x(3x-y) + 3y (y-3x)=9x(3x-y)-3y(3x-y)

= (9x-3y)(3x-y)

= 3(3x-y)(3x-y)

= 3(3x-y)^2

b) \(x^3-3x^2\)\(-9x+27\)= \(\left(x^3-3x^2\right)\)\(-\left(9x-27\right)\)

= \(x^2\left(x-3\right)\)\(-9\left(x-3\right)\)

= \(\left(x^2-9\right)\left(x-3\right)\)

= \(\left(x+3\right)\left(x-3\right)\left(x-3\right)\)

= \(\left(x+3\right)\left(x-3\right)^2\)

4 tháng 11 2016

Bài 1 ) a ) \(\left(-2x^3\right)\left(x^2+5x-\frac{1}{2}\right)\)

\(=-2x^5-10x^4+x^3\)

b ) \(\left(6x^3-7x^2+x+2\right):\left(2x+1\right)\)

\(=3x^2-5x+2\)

2 ) a ) \(9x\left(3x-y\right)+3y\left(y-3x\right)\)

\(=9x\left(3x-y\right)-3y\left(3x-y\right)\)

\(=\left(3x-y\right)\left(9x-3y\right)\)

\(=3\left(3x-y\right)\left(x-y\right)\)

b ) \(x^3-3x^2-9x+27\)

\(=\left(x^3-3x^2\right)-\left(9x-27\right)\)

\(=x^2\left(x-3\right)-9\left(x-3\right)\)

\(=\left(x^2-9\right)\left(x-3\right)\)

\(=\left(x-3\right)\left(x+3\right)\left(x-3\right)\)

 

 

 

5 tháng 7 2016

Các bạn cố gắng giúp mình nha . Mình xin chân thành cảm ơn 

9 tháng 7 2018

\(\left(X^2+2x+1\right)+\left(4y^2+\frac{4.1y}{4}+\frac{1}{16}\right)+2-\frac{1}{16}.\)

\(\left(x+1\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)

9 tháng 7 2018

\(x^2+4y^2+2x-y+2\)

\(=\left(x^2+2x+1\right)+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{15}{16}\)

\(=\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(2y-\frac{1}{4}\right)\ge0\forall y\end{cases}\Rightarrow\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\ge\frac{15}{16}}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(2y-\frac{1}{4}\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}}\)

Vậy GTNN của \(x^2+4y^2+2x-y+2=\frac{15}{16}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}\)

Tham khảo nhé~