K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

\(3x+2-\sqrt{9x^2+6x+1}\)

\(=3x+2-\sqrt{\left(3x+1\right)^2}\)

\(=3x+2-\left(3x+1\right)\)(Chú ý \(x>\frac{1}{3}\))

\(=3x+2-3x-1=1\)

5 tháng 6 2019

a/ \(\frac{\sqrt{x^2-4x+4}}{x-2}=\frac{\sqrt{\left(x-2\right)^2}}{x-2}=\frac{\left|x-2\right|}{x-2}\)

có x<2\(\Rightarrow\left|x-2\right|=2-x\)

\(\Rightarrow\frac{2-x}{x-2}\)

b/ \(\frac{\sqrt{9x^2-6x+1}}{9x^2-1}=\frac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}\)

Có x>\(\frac{1}{3}\Rightarrow\left|3x-1\right|=3x-1\)

\(\Rightarrow\frac{3x-1}{\left(3x-1\right)\left(3x+1\right)}=\frac{1}{3x+1}\)

9 tháng 5 2018

b)

)\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)

\(\frac{2}{2-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\)

=\(\frac{2\left(2+\sqrt{5}\right)-2\left(2-\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}\)

=\(\frac{4+2\sqrt{5}-4+2\sqrt{5}}{2^2-\sqrt{5}^2}\)

=\(\frac{4\sqrt{5}}{4-5}\)

=\(\frac{4\sqrt{5}}{-1}\)

\(-4\sqrt{5}\)

4 tháng 3 2019

x=0 ; x=2/3 - cau b 

anh giai tu giai thu

5 tháng 3 2019

Giai giùm đi

7 tháng 10 2015

a/ \(\Rightarrow\sqrt{\left(3x+1\right)^2}=1\Rightarrow3x+1=1\Rightarrow3x=0\Rightarrow x=0\)

b/ \(\Rightarrow\frac{3}{2}\sqrt{3x}-\sqrt{3x}-\frac{1}{2}\sqrt{3x}=5\)

\(\Rightarrow\sqrt{3x}\left(\frac{3}{2}-1-\frac{1}{2}\right)=5\)

\(\Rightarrow\sqrt{3x}.0=5\Rightarrow0=5\) (vô lí)

Vậy pt vô nghiệm

31 tháng 5 2018

4) \(2x^2+2x+1=\left(4x-1\right)\sqrt{x^2+1}\)

\(\Leftrightarrow\left[\left(4x-1\right)\sqrt{x^2+1}\right]^2=\left(2x^2+2x+1\right)^2\)

\(\Leftrightarrow\left(4x-1\right)^2.\left(x^2+1\right)=4x^4+4x^2+1+8x^3+4x^2+4x\)

\(\Leftrightarrow16x^4+16x^2-8x^3-8x+x^2+1=4x^4+8x^2+8x^3+4x+1\)

\(\Leftrightarrow16x^4+16x^2-8x^3-8x+x^2-4x^4-8x^2-8x^3-4x=-1+1\)

\(\Leftrightarrow16x^4-4x^4-8x^3-8x^3+16x^2+x^2-8x^2-8x-4x=0\)

\(\Leftrightarrow12x^4+9x^2-16x^3-12x=0\)

\(\Leftrightarrow x\left[3x\left(4x^2+3\right)-4\left(4x^2+3\right)\right]=0\)

\(\Leftrightarrow x\left(4x^2+3\right)\left(3x-4\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\4x^2+3=0\\x=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(lo\text{ại}\right)\\4x^2+3=0\left(v\text{ô}-l\text{ý}\right)\\x=\dfrac{4}{3}\left(nh\text{ậ}n\right)\end{matrix}\right.\)

S=\(\left\{\dfrac{4}{3}\right\}\)

26 tháng 8 2017

1/ \(3x^2+6x-\frac{4}{3}=\sqrt{\frac{x+7}{3}}\)

Đặt \(t+1=\sqrt{\frac{x+7}{3}}\)

\(\Leftrightarrow3t^2+6t-4=x\) từ đây ta có hệ

\(\hept{\begin{cases}3t^2+6t-4=x\\9x^2+18x-4=t\end{cases}}\)

Tới đây thì đơn giản rồi

26 tháng 8 2017

2/ \(9x^2-x-4=2\sqrt{x+3}\)

\(\Leftrightarrow9x^2=x+3+2\sqrt{x+3}+1\)

\(\Leftrightarrow9x^2=\left(\sqrt{x+3}+1\right)^2\)

Tự làm nốt