\(\sqrt{xy}\)+ 25y . Thay x =\(\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

\(x^2=\left(\sqrt{\frac{2}{3}}\right)^2=\frac{2}{3}\)

\(y^2=\left(\sqrt{\frac{6}{25}}\right)^2=\frac{6}{25}\)

\(\sqrt{xy}=\sqrt{\frac{2}{3}.\frac{6}{25}}=\sqrt{\frac{4}{25}}=\frac{2}{5}\)

=> \(P=3.\frac{2}{3}-5.\frac{2}{5}+25.\frac{6}{25}=2-2+6=6\)

\(P=3\cdot\dfrac{2}{3}-5\cdot\sqrt{\dfrac{2}{5}}+25\cdot\dfrac{6}{25}=2+6-\sqrt{10}=8-\sqrt{10}\)

26 tháng 10 2016

Thay \(x=\sqrt{\frac{2}{3}};y=\sqrt{\frac{6}{25}}\) vào biểu thức P ta được:

\(P=3\left(\sqrt{\frac{2}{3}}\right)^2-5\sqrt{\sqrt{\frac{2}{3}}.\sqrt{\frac{6}{25}}}+25\left(\sqrt{\frac{6}{25}}\right)^2\)

\(P=3.\frac{2}{3}-\sqrt{25.\sqrt{\frac{2}{3}}.\sqrt{\frac{6}{25}}}+25.\frac{6}{25}\)

\(P=2-\sqrt{\sqrt{25^2}.\sqrt{\frac{2}{3}}.\sqrt{\frac{6}{25}}}+6\)

\(P=8-\sqrt{\sqrt{25^2.\frac{2}{3}.\frac{6}{25}}}\)

\(P=8-\sqrt{\sqrt{100}}\)

\(P=8-\sqrt{10}\)

 

27 tháng 10 2016

Bài này cũng dễ

Chỉ cần thay vào là dc mừ

Sao lại vào câu hỏi hay

6 tháng 3 2020

1. A = 75(42004 + 42003 +...+ 4+ 4 + 1) + 25

    A = 25 . [3 . (42004 + 42003 +...+ 4+ 4 + 1) + 1]

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 3 + 1)

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 4)

    A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)

    A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100

6 tháng 3 2020

3a) |x| = 1/2 

=> x = 1/2 hoặc x = -1/2

với x = 1/2:

A = \(3.\left(\frac{1}{2}\right)^2-2.\frac{1}{2}+1\)

\(A=\frac{3}{4}-1+1=\frac{3}{4}\)

với x = -1/2

A = \(3.\left(-\frac{1}{2}\right)^2-2\left(-\frac{1}{2}\right)+1\)

\(A=\frac{3}{4}+1+1=\frac{3}{4}+2=\frac{11}{4}\)

21 tháng 11 2019

BÀi 2:

Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)

a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)

b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)

c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)

d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)

21 tháng 11 2019

b)Vì BCNN(3;5) = 15

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)

Vậy...

c)Vì BCNN(2;3;5) = 30

\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

WTFFFFFF>>>

d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính

e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)

Vậy...

10 tháng 12 2017

1,

Ta có; \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

........

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng các vế ta được:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\) (đpcm)

2,Câu hỏi của Nguyễn Như Quỳnh - Toán lớp 7 | Học trực tuyến

3, 

3n+2-2n+2+3n-2n

= 3n.32-2n.22+3n-2n

= 3n(9 + 1) - 2n(4 + 1)

= 3n.10 - 2n.5

= 3n.10 - 2n-1.10

= 10(3n - 2n-1) chia hết cho 10

2 tháng 12 2019

\(\left(-2\right)^3+\frac{1}{2}:\frac{1}{8}-\sqrt{25}=\left|-13\right|\)

\(=-8+\frac{1}{2}.8-5+13\)

\(=4\)

\(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(-\frac{2012}{2013}\right)^0\)

\(=\frac{1}{2}.10-\frac{1}{4}+1\)

\(=5-\frac{5}{4}\)

\(=\frac{15}{4}\)

\(\left(-2\right)^3+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+|-13|\)

\(=-12+\frac{1}{2}.8-5+13\)

\(=-12+4-5+13\)

\(=4\)