Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
Mấy cái này chuyển vế đổi dấu là xong í mà :3
1,
16-8x=0
=>16=8x
=>x=16/8=2
2,
7x+14=0
=>7x=-14
=>x=-2
3,
5-2x=0
=>5=2x
=>x=5/2
Mk làm 3 cau làm mẫu thôi
Lúc đăng đừng đăng như v :>
chi ra khỏi ngt nản
từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại
Câu 2 thì có thể tìm max:
$3x-2x^2+6=6-(2x^2-3x)=6-2(x^2-\frac{3}{2}x)$
$=\frac{57}{8}-2[x^2-2.x.\frac{3}{4}+(\frac{3}{4})^2]$
$=\frac{57}{8}-2(x-\frac{3}{4})^2\leq \frac{57}{8}$ do $(x-\frac{3}{4})^2\geq 0$ với mọi $x$
Vậy GTLN của biểu thức là $\frac{57}{8}$ khi $x=\frac{3}{4}$
Câu 1: Biểu thức câu 1 thì chỉ có thể tìm min thôi bạn nhé
Ta có:
$x^2+3x-5=x^2+2.\frac{3}{2}.x+(\frac{3}{2})^2-\frac{29}{4}$
$=(x+\frac{3}{2})^2-\frac{29}{4}\geq -\frac{29}{4}$ do $(x+\frac{3}{2})^2\geq 0$ với mọi $x$
Vậy GTNN của biểu thức là $\frac{-29}{4}$ khi $x=-\frac{3}{2}$
Câu 3 giống câu 1
\(A=x^3+3x^2+3x+6\)
\(=x^3+3x^2+3x+1+5\)
\(=\left(x+1\right)^3+5\)
Thay x = 19 vào biểu thức \(A=\left(x+1\right)^3+5\)ta được:
\(A=\left(19+1\right)^3+5=20^3+5=8000+5=8005\)
Vậy giá trị của biểu thức A tại x = 19 là 8005.
\(B=x^3-3x^2+3x\)
\(=x^3-3x^2+3x-1+1\)
\(=\left(x-1\right)^3+1\)
Thay x = 11 vào biểu thức \(B=\left(x-1\right)^3+1\)ta được:
\(B=\left(11-1\right)^3+1=10^3+1=1000+1=1001\)
Vậy giá trị của biểu thức B tại x = 11 là 1001.
\(a.\dfrac{x+1}{2x+6}+2x=\dfrac{x+1+4x^2+12x}{2x+6}=\dfrac{4x^2+13x+1}{2x+6}\) ( x # -3)
\(b.\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\) ( x # - 3)
Các câu còn lại tương tự .
\(a,\dfrac{x+1}{2x+6}+2x\)
\(=\dfrac{x+1}{2x+6}+\dfrac{2x\left(2x+6\right)}{2x+6}\)
\(=\dfrac{x+1+4x^2+12x}{2x+6}\)
\(=\dfrac{4x^2+13x+1}{2x+6}\)
\(b,\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(=\dfrac{3x}{2x^2+6x}-\dfrac{x-6}{2x^2-6x}\)
\(=\dfrac{2x-6}{2x^2+6x}=\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}=\dfrac{x-3}{x^2+3x}\)
\(c,\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x^2}\)
\(=\dfrac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\dfrac{x\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}-\dfrac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{2x}{x+2y}\)
\(d,\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{4-9x^2}\)
\(=\dfrac{3x+2}{\left(3x+2\right)\left(3x-2\right)}-\dfrac{3x-2}{\left(3x+2\right)\left(3x-2\right)}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-3x+2+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{1}{3x+2}\)
Sửa đề: thêm (...) phần mẫu :
\(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\\ \)
ĐK: \(x^2-3x+3\ne0\Leftrightarrow\left(x-\frac{3}{2}\right)^2+\left(3-\frac{9}{4}\right)\ne0\) có (3-9/4)>0 vậy các mẫu khác không với mọi x
Đặt x^2-3x+4=t => t>=(4-9/4)=7/4
\(\Leftrightarrow\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\Leftrightarrow\frac{t\left(t+1\right)}{t\left(t-1\right)\left(t+1\right)}+\frac{2\left(t^2-1\right)}{t\left(t-1\right)\left(t+1\right)}=\frac{6t\left(t-1\right)}{t\left(t-1\right)\left(t+1\right)}\)
\(\Leftrightarrow\left(t^2+t\right)+\left(2t^2-2\right)=6t^2-6t\)\(\Leftrightarrow3t^2-7t=-2\)
\(\Leftrightarrow t^2-2.\frac{7}{6}t+\left(\frac{7}{6}\right)^2=\frac{49}{36}-\frac{2}{3}=\frac{3.49-2.36}{3.36}=\frac{49-2.12}{36}=\frac{25}{36}=\left(\frac{5}{6}\right)^2\)
\(\Leftrightarrow\left(t-\frac{7}{6}\right)^2=\left(\frac{5}{6}\right)^2\Rightarrow\left\{\begin{matrix}t=\frac{7+5}{6}=2\\t=\frac{7-5}{6}=-\frac{1}{3}\left(loai\right)\end{matrix}\right.\) 7/4<2 loại luôn
Kết luận vô nghiệm
Nhầm 7/4<2 có nghiệm
tiếp:
x^2-3x+4=2<=>x^2-3x+2=0 {a+b+c=0}
x=1 hoạc x=2
Kết luận: pt có nghiệm x=1 hoạc x=2
Trả lời:
a, \(ĐK:x\ne\frac{1}{3}\)
\(A=\frac{3x+1-1}{1-3x}:\frac{3x-9x^2}{3x-1}=\frac{3x}{1-3x}\cdot\frac{3x-1}{3x-9x^2}=\frac{3x.\left(3x-1\right)}{\left(1-3x\right)\left(3x-9x^2\right)}=\frac{3x\left(3x-1\right)}{\left(1-3x\right)3x\left(1-3x\right)}\)
\(=\frac{3x\left(3x-1\right)}{3x\left(1-3x\right)^2}=\frac{3x\left(3x-1\right)}{3x\left(3x-1\right)^2}=\frac{1}{3x-1}\)
b, \(5x^2+3x=0\)
\(\Leftrightarrow x\left(5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}}\)
Thay x = 0 vào A, ta có :
\(A=\frac{1}{3.0-1}=\frac{1}{-1}=-1\)
Thay x = - 3/5 vào A, ta có :
\(A=\frac{1}{3.\left(-\frac{3}{5}\right)-1}=\frac{1}{-\frac{9}{5}-1}=\frac{1}{-\frac{14}{5}}=-\frac{5}{14}\)
c, \(A=\frac{x}{x-1}\)
\(\Leftrightarrow\frac{1}{3x-1}=\frac{x}{x-1}\)\(\left(ĐK:x\ne\frac{1}{3};x\ne1\right)\)
\(\Leftrightarrow\frac{x-1}{\left(3x-1\right)\left(x-1\right)}=\frac{x\left(3x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)
\(\Rightarrow x-1=3x^2-x\)
\(\Leftrightarrow3x^2-x-x+1=0\)
\(\Leftrightarrow3x^2-2x+1=0\)
\(\Leftrightarrow3\left(x^2-\frac{2}{3}x+\frac{1}{3}\right)=0\)
\(\Leftrightarrow x^2-\frac{2}{3}x+\frac{1}{3}=0\)
\(\Leftrightarrow x^2-2.x.\frac{1}{3}+\frac{1}{9}+\frac{2}{9}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2+\frac{2}{9}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=-\frac{2}{9}\) (vô lí)
Vậy không tìm được x thỏa mãn đề bài.
d, \(\frac{6}{A}=\frac{6}{\frac{1}{3x-1}}=6\left(3x-1\right)=18x-6\)
Vậy x thuộc Z thì 6/A thuộc Z
a) 3x2 + 3x - 6 = 3(x2 + x - 2) = 3(x2 - x + 2x - 2) = 3[x(x - 1) + 2(x - 1)] = 3(x - 1)(x + 2)
b) 3x2 - 3x - 6 = 3(x2 - x - 2) = 3(x2 + x - 2x - 2) = 3[x(x + 1) - 2(x + 1)] = 3(x + 1)(x - 2)