Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
Bài giải
a, \(\left(3x-1\right)\left(x+1\right)>0\)
Khi \(\orbr{\begin{cases}3x-1< 0\\x+1< 0\end{cases}}\Rightarrow\orbr{\begin{cases}3x< 1\\x< -1\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x< -1\end{cases}}\)
Hoặc \(\orbr{\begin{cases}3x-1>0\\x+1>0\end{cases}}\Rightarrow\orbr{\begin{cases}3x>1\\x>-1\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{1}{3}\\x>-1\end{cases}}\)
b, \(\left(x+2\right)^2\left(x-3\right)\le0\)
\(\Rightarrow\text{ }\left(x+2\right)^2\text{ và }\left(x-3\right)\) đối nhau
Mà \(\left(x+2\right)^2\ge0\) nên \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x-3\le0\end{cases}}\Rightarrow\hept{\begin{cases}x+2\ge0\\x\le3\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-2\\x\le3\end{cases}}\text{ }\left(\text{ loại}\right)\)
\(\Rightarrow\text{ }x\in\varnothing\)
c, \(\left(x-\frac{1}{3}\right)^5=4\left(x-\frac{1}{3}\right)^3\)
\(\left(x-\frac{1}{3}\right)^5-4\left(x-\frac{1}{3}\right)^3=0\)
\(\left(x-\frac{1}{3}\right)^3\left[\left(x-\frac{1}{3}\right)^2-4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{3}\right)^3=0\\\left(x-\frac{1}{3}\right)^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=0\\\left(x-\frac{1}{3}\right)^2=4=\left(\pm2\right)^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{5}{3}\text{ ; }x=\frac{7}{3}\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{\frac{1}{3}\text{ ; }-\frac{5}{3}\text{ ; }\frac{7}{3}\right\}\)
TH1: |3x|=3 và |y+5|=1
=>\(\left\{{}\begin{matrix}\left|x\right|=1\\y+5\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{1;-1\right\}\\y\in\left\{-4;-6\right\}\end{matrix}\right.\)
TH2: |3x|=0 và |y+5|=4
=>\(\left\{{}\begin{matrix}x=0\\y\in\left\{-1;-9\right\}\end{matrix}\right.\)
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Ta có: \(\left|3x-5\right|+\left(2y+5\right)^2+\left(4z-3\right)^{20}\ge0\)với \(\forall x;y;z\)
Mà \(\left|3x-5\right|+\left(2y+5\right)^2+\left(4z-3\right)^{20}\le0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^2+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-5}{2}\\x=\frac{3}{4}\end{cases}}}\)
Vậy \(x=\frac{5}{3};y=\frac{-2}{5};z=\frac{3}{4}\)
\(\left|3x-5\right|-\left(2y+8\right)^{20}+\left(4z-3\right)^{2018}\le0\)
ta có:
\(\hept{\begin{cases}\left|3x-5\right|\ge0\\\left(2y+8\right)^{20}\ge0\\\left(4z-3\right)^{2018}\ge0\end{cases}}\Rightarrow\left|3x-5\right|-\left(2y+8\right)^{20}+\left(4z-3\right)^{2018}\ge0\)
mà \(\left|3x-5\right|-\left(2y+8\right)^{20}+\left(4z-3\right)^{2018}\le0\)=> \(\left|3x-5\right|-\left(2y+8\right)^{20}+\left(4z-3\right)^{2018}=0\)
=> \(\hept{\begin{cases}\left|3x-5\right|=0\\\left(2y+8\right)^{20}=0\\\left(4z-3\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-4\\z=\frac{4}{3}\end{cases}}\)
vậy \(x=\frac{5}{3},y=-4,z=\frac{4}{3}\)
bạn nên có một bước giải thích vì sao
(2y+8)\(\ge0\)
\(|3x-5|\ge0\)
\((4z-3)\ge0\)