Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-1\right)^2=49\)
\(\Rightarrow\left(x-1\right)^2=7^2=\left(-7\right)^2\)
\(\Rightarrow x-1=7\) hoặc \(x-1=-7\)
\(x=7+1=8\) \(x=-7+1=-6\)
Vậy x = 8 hoặc x = - 6
b) \(3\cdot\left(13-x\right)^2=27\)
\(\left(13-x\right)^2=27\div3=9\)
\(\Rightarrow\left(13-x\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow13-x=3\) hoặc \(13-x=-3\)
\(x=13-3=10\) \(x=13+3=16\)
Vậy x = 10 hoặc x = 16
c) \(164-\left(15-x\right)^3=100\)
\(\left(15-x\right)^3=164-100=64\)
\(\Rightarrow\left(15-x\right)^3=4^3\)
\(\Rightarrow15-x=4\)
\(x=15-4=11\)
Vậy x = 11
d) \(\left(x+3\right)^3-15=210\)
\(\left(x+3\right)^3=210+15=225\)
\(\Rightarrow\left(x+3\right)^3=...\)
Tương tự mũ lẻ cậu nhé
e) \(x^2\div4=16\)
\(x^2=16\cdot4=64\)
\(\Rightarrow x^2=8^2=\left(-8\right)^2\)
Vậy x = 8 hoặc x = - 8
a/\(\left(x-1\right)^2\)=49
\(\left(x-1\right)^2\)=\(7^2\)
=>x-1=7
x=7+1
x=8
b/3.\(\left(13-x\right)^2\)=27
\(\left(13-x\right)^2\)=27:3
\(\left(13-x\right)^2\)=9
\(\left(13-x\right)^2\)=\(3^2\)
=>13-x=3
x=13-3
x=10
c/164-\(\left(15-x\right)^3\)=100
\(\left(15-x\right)^3\)=164-100
\(\left(15-x\right)^3\)=64
\(\left(15-x\right)^3\)=\(4^3\)
=>15-x=4
x=15-4
x=11
d/\(\left(x+3\right)^3\)-15=210
\(\left(x+3\right)^3\)=210+15
\(\left(x+3\right)^3\)=225
sai đề bài câu d hay sao ý bạn ạ
chỉ có \(\left(x+3\right)^2\)thì mới tính được
e/\(x^2\):4=16
\(x^2\)=16.4
\(x^2\)=64
\(x^2\)=\(8^2\)
=>x=8
Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3
a) \(\frac{3}{7}-\frac{1}{7}x=\frac{2}{3}\)
=> \(\frac{1}{7}x=\frac{3}{7}-\frac{2}{3}=-\frac{5}{21}\)
=> \(x=-\frac{5}{21}:\frac{1}{7}=-\frac{5}{21}\cdot7=-\frac{5}{3}\)
b) \(3x^2-2=72\)=> 3x2 = 74 => x2 = 74/3 => x không thỏa mãn
c) \(\left(19x+2\cdot5^2\right):14=\left(13-8\right)^2-4^2\)
=> \(\left(19x+2\cdot25\right):14=5^2-4^2=9\)
=> \(\left(19x+50\right):14=9\)
=> \(19x+50=126\)
=> \(19x=76\)
=> x = 4
d) \(x:\frac{1}{2}+x:\frac{1}{4}+x:\frac{1}{8}+x:\frac{1}{16}+x:\frac{1}{32}=343\)
=> \(x\cdot2+x\cdot4+x\cdot8+x\cdot16+x\cdot32=343\)
=> \(x\left(2+4+8+16+32\right)=343\)
=> x . 62 = 343
=> x = 343/62
b. 1404 : [118 - (4x + 6)] = 27
118 - (4x + 6) = 52
4x + 6 = 66
4x = 60
x = 15
d) \(5x^2-3x=0\)
\(\Leftrightarrow x\left(5x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{5}\end{cases}}\)
e) \(3\left(x-1\right)+4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[3-4.\left(x-1\right)\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3-4\left(x-1\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\4\left(x-1\right)=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x-1=\frac{3}{4}\Rightarrow x=\frac{7}{4}\end{cases}}\)
f) \(2\left(x-2\right)^2=\left(x-2\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x-2=\frac{1}{2}\Rightarrow x=\frac{5}{2}\end{cases}}\)
g) \(\left(x-2020\right)^4=\left(x-2020\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2020\right)^2=0\\\left(x-2020\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=2019,x=2021\end{cases}}\)
1. \(6x^3-8=40\\ 6x^3=48\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
2. \(4x^5+15=47\\ 4x^5=32\\ x^5=8\\ \Rightarrow x\in\varnothing\left(\text{vì }x\in N\right)\)Vậy x ∈ ∅
3. \(2x^3-4=12\\ 2x^3=16\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
4. \(5x^3-5=0\\ 5x^3=5\\ x^3=1\\ \Rightarrow x=1\)Vậy x = 1
5. \(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)Vậy \(x\in\left\{5;6\right\}\)
6. \(\left(3x-2\right)^{20}=\left(3x-1\right)^{20}\\ \Rightarrow3x-2=3x-1\\ 3x-3x=2-1\\ 0=1\left(\text{vô lí}\right)\)Vậy x ∈ ∅
7. \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\\ \left(3x-1\right)^{10}=\left[\left(3x-1\right)^2\right]^{10}\\ \Rightarrow\left(3x-1\right)^2=3x-1\\ \left(3x-1\right)^2-\left(3x-1\right)=0\\ \left(3x-1\right)\left[\left(3x-1\right)-1\right]=0\\ \left(3x-1\right)\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(\text{loại vì }x\in N\right)\\x=\frac{2}{3}\left(\text{loại vì }x\in N\right)\end{matrix}\right.\)Vậy x ∈ ∅
8. \(\left(2x-1\right)^{50}=2x-1\\ \left(2x-1\right)^{50}-\left(2x-1\right)=0\\ \left(2x-1\right)\left[\left(2x-1\right)^{49}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^{49}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\left(\text{loại vì }x\in N\right)\\x=1\left(t/m\right)\end{matrix}\right.\)Vậy x = 1
9. \(\left(\frac{x}{3}-5\right)^{2000}=\left(\frac{x}{3}-5\right)^{2008}\\ \left(\frac{x}{3}-5\right)^{2008}-\left(\frac{x}{3}-5\right)^{2000}=0\\ \left(\frac{x}{3}-5\right)^{2000}\left[\left(\frac{x}{3}-5\right)^8-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(\frac{x}{3}-5\right)^{2000}=0\\\left(\frac{x}{3}-5\right)^8=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}-5=0\\\frac{x}{3}-5=1\\\frac{x}{3}-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}=5\\\frac{x}{3}=6\\\frac{x}{3}=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\cdot3=15\\x=6\cdot3=18\\x=4\cdot3=12\end{matrix}\right.\)Vậy \(x\in\left\{15;18;12\right\}\)
\(1.6x^3-8=40\\ \Leftrightarrow6x^3=48\\ \Leftrightarrow x^3=8\Leftrightarrow x^3=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
\(2.4x^3+15=47\) (T nghĩ đề là mũ 3)
\(\Leftrightarrow4x^3=32\Leftrightarrow x^3=8=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 3, 4 tương tự nhé.