Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+2\right)=0\)
Vì x^2 + 2 > 0 \(\forall x\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
Vậy ...
\(x^4+x^3+2x-4=0\Leftrightarrow\left(x^4-1\right)+\left(x^3-1\right)+\left(2x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+\left(x-1\right)\left(x^2+x+1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1+x^2+x+1+2\right)=0\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+2\right)=0\text{ mà }x^2+2>0\text{ nên:}x-1=0\text{ hoặc:}x+2=0\)
x=1 hoặc x=-2
\(A=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(=\left(x+2\right)^3+\left(x-2\right)^3-2x^3-24x\)
\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x\)
\(=\left(x^3+x^3-2x^3\right)+\left(6x^2-6x^2\right)+\left(12x+12x-24x\right)+\left(8-8\right)\)
\(=0\)
A=(x+2+x-2)[(x+2)2-(x-2-x+2)+(x-2)2]-2x3-24x
A=2x(x2+4x+4-x+2+x-2+x2-4x+4)-2x3-24x
A=2x(2x2+8)-2x3-24x
A=4x3+16x-2x3-24x
A=2x3-8
A=2(x3-4)
bạn phân tích biểu thức thành nhân tử rồi xét :
Nếu >0 thì các nhân tử phải cùng âm hoặc dương
nếu <0 thì các nhân tử trái dấu
tương tự như phân số
nếu >0 thì tử và mẫu cùng dấu
nếu <0 thì trái dấu
:) chúc bạn làm tốt nha dễ mà
\(2x^2+6x-8=0\)
<=> \(2x^2-2x+8x-8=0\)
<=> \(2x\left(x-1\right)+8\left(x-1\right)=0\)
<=> \(\left(2x+8\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}2x+8=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-4\\x=1\end{cases}}\)
\(2x^2-x-1=0\)
<=> \(2x^2-2x+x-1=0\)
<=> \(2x\left(x-1\right)+\left(x-1\right)=0\)
<=> \(\left(2x+1\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
\(4x^2-5x-9=0\)
<=> \(4x^2+4x-9x-9=0\)
<=> \(4x\left(x+1\right)-9\left(x+1\right)=0\)
<=> \(\left(4x-9\right)\left(x+1\right)=0\)
<=> \(\hept{\begin{cases}4x-9=0\\x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)
học tốt
\(2x^2+6x-8=0\)
\(< =>2x^2-2x+8x-8=0\)
\(\Leftrightarrow2x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow2x+8=0\)hoặc \(x-1=0\)
\(\Leftrightarrow x=-4\)hoặc \(x=1\)
mk chỉnh lại đề nha:
\(x^2-x-6\)
\(=x^2-3x+2x-6\)
\(=x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x+2\right)\)
3(X-1)-2.(X+5)-(7+X)
=3X-3-2X-10-7-X
=-10
\(3\left(x-1\right)-2\left(x+5\right)-\left(7+x\right)\)
\(=3x-3-2x-10-7-x\)
\(=\)\(\left(3x-2x-x\right)-\left(3+7+10\right)\)
\(=0x-20\)
\(=-20\)