Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ giả thiết dễ thấy p>q>=2
ta có q(q-1)(q+1) chia hết cho q, mà 0<q-1<q<p và p nguyên tố nên q và p-1 không thể chia hết cho p
từ đó, ta có q+1 chia hết cho p
lại có 0<q+1<2q<2p nên q+1=p
nếu q lẻ thì p=q+1 chẵn và p>2 nên p là hợp số, mâu thuẫn
do đó q=2 từ đó ta có p=3 thử lại thấy thỏa mãn
vậy có một cặp số nguyên tối (p;q) thỏa mãn yêu cầu(3;2)
PT <=> x2 = 2y2 + 1. Vì x2 là SCP lẻ
=> x2 = 2y2 + 1 = 1 (mod 4) mà y là số nguyên
=> x = 3, y = 2.
\(x^2-2y^2=1\)
\(\Leftrightarrow x^2-\left(\sqrt{2}y\right)^2=1\)
\(\Leftrightarrow\left(x-\sqrt{2}y\right)\left(x+\sqrt{2}y\right)=1\)
Tới đây xét Ư(1)={1;-1}
p2-2q2=1
=>p2=2q+1(1)
Vì p2=2q+1 =>p là số lẻ=> p=2k+1=>p2=4k2+4k+1(2)
Từ 1 và 2 => 4k2+4k+1=2q+1
=>2(2k2+2k)=2q
=>2k2+2k=q=> q là số chẵn Mà q là số nguyên tố => q=2
Thay q = 2 vào đề bài => p=3
-Nếu p là số nguyên tố chẵn => 22+p2=2*2+22=8 ( loại)
-Nếu p là số không chia hết cho 3 => 2p+p2 có dạng là 3k (k thuộc N) mà 2p+p2 > 3 => 2p+p2 không là số nguyên tố
-Nếu p = 3 =>2p+p2 = 17 ( thỏa mãn )
Vậy p = 3
Bổ đề : Số chính phương chia 5 chỉ dư 1 và 4 (bạn tự CM)
Ta dễ dàng thấy 5^2p + 2013 chia 5 dư 3 (vế trái chia 5 dư 3) (1)
Từ bổ đề ta có q^2 chia 5 dư 1 hoặc 4 mà 5^2p^2 chia hết cho 5 nên vế phải chia 5 dư 1 hoặc 4 (2)
Từ (1) và (2), ta thấy sự mâu thuẫn
Vậy không có p q nguyên tố thoả mãn đề bài
k nhé
Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo nhé