Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a, -9 \(\le\)x\(\le\)8
\(\Rightarrow\)x \(\in\){-9, -8, -7, ..., -1, 0, 1, 2,,...., 8}
tổng các giá trị của x là: (-9) + (-8) + (-7 )+ ... + (-1 )+ 0 + 1 +2 +....+ 8
= (-9) + [(-8) +8] + [(-7 ) + 7] + ....+ [ -1 +1] +0
= -9 +0+0+0....+0
= -9
các câu sau làm tương tự
bài 2 ;
các câu a, b tương tự.
c, |x|< 7
suy ra - 7 < x< 7
làm tương tự
a: \(x\in\left\{-6;-5;-4;-3;-2;-1;0;1;2;3\right\}\)
c: \(x\in\left\{-4;-3;-2;-1\right\}\)
Có -13<x+12<8
Xét -13<x+12
x>-25 (1)
Xét x+12<8
x<-4 (2)
Từ (1) + (2)
-25<x<-4 (lớn/nhỏ hơn hoặc = nhà bạn
a) /x-2/ nhỏ hơn hoặc bằng 2
vì /a/ \(\ge\)0
mà /x-2/\(\le\)2
\(\Rightarrow\)/x-2/={0;1;2}
Nếu /x-2/=0
x-2 =0
\(\Rightarrow\)x=2
Nếu /x-2/=1
x-2 =1
\(\Rightarrow\)x=3
Nếu /x-2/=2
x-2 =2
\(\Rightarrow\)x=4
Vì x\(\in\)Z nên x={2;3;4}
b) /x-3/ nhỏ hơn hoặc bằng 0
Vì /a/\(\ge\)0
mà /x-3/\(\le\)0
nên /x-3/=0
x-3 =0
\(\Rightarrow\)x=3
1) Giải theo cách lớp 8 nhé:
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng.
(x + y)² >= 4xy
(y + z)² >= 4yz
(x + z)² >= 4xz
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z²
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0)
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0.
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*)
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0
<=> a - b + b - c + c - a = 0
<=> 0 = 0 (1)
x\(\in\)B(13) và 21\(\le\)x\(\le\)65
B(13) = x = {0;13;26;39;52;65;78;...}
Mà 21\(\le\)x\(\le\)65 => x \(\in\){26;39;52;65}
Về phần đề thì mình không chắc đâu nha