Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(4x^2\right)^2\left(x-y\right)-\left(x-y\right)\)
\(=\left[\left(4x^2\right)^2-1^2\right]\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(4x^2-1\right)\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(2x+1\right)\left(2x-1\right)\left(x-y\right)\)
dài quá mình làm 3 câu đầu thôi nhé!
a)7x^2-14xy
=7x(x-2y)
b) 3x^2-6xy+3y^2
=3(x^2-2xy+y^2)
c) x^2-4z^2-2xy+y^2
=(x^2-2xy+y^2)-4z^2
=(x-y-2z)(x-y+2z)
=3(x-y)^2
c)
1: =3(y^2+x^2+2xy-z^2)
=3(x+y-z)(x+y+z)
2: =2(8x^3+27y^3)
=2(2x+3y)(4x^2-6xy+9y^2)
3: =(x-y)^2-25
=(x-y-5)(x-y+5)
a/ x^3-6x^2+12x-8
=(x-2)^3
b/x^2+5x+4
=x^2+x+4x+4
=x(x+1)+4(x+1)
=(x+1)(x+4)
c/ 16^2-9(x+1)^2=0
<=> (4x-3x-3)(4x+3x+3)=0
<=>x-3=0 hay 7x+3=0
<=> x=3 hay x=-3/7
d/ x^3-2x^2-x+2
=x^2(x-2)-(x-2)
=(x-2)(x^2-1)
=(x-2)(x-1)(x+1)
e/x^2+y^2-2xy-x+y
=(x-y)^2-(x-y)
f/x^3+y^3+3y^2+3y+1
=x^3+(y+1)^3
=(x+y+1)[x^2-xy-x+(y+1)^2]
=(x+y+1)(x^2-xy-x+y^2+2y+1)
b. x2+2.5/2x+(5/2)2-(5/2)2+4
= (x+5/2)2-25/4+4
=(x+5/2)2-(3/2)2
= x+ 5/2 -3/2 ) . (x+5/2-3/2)
= (x+1 ) (x+2)
c.
(4x)2- [3(x+1)]2 =0
[4x-3(x+1)] [4x+3(x+1)] =0
(x-3) (7x+3) =0
<=> x-3 =0 => x = 3
7x+3=0 => x= -3/7
d. x3-2x2-x+2
= (x3-2x2) - (x+2)
= x2 (x-2) - (x-2)
= (x-2) (x2-1)
CHÚC BẠN HỌC TỐT
* Tớ còn a, e, và f sorry nó k dễ để suy nghĩ trong thơi gian ngắn được nên tớ bỏ !! Ahihihih
Lời giải:
Những bài này sử dụng những hằng đẳng thức đáng nhớ.
Vì $x=-2$ nên $x+2=0$. Ta có:
\(A=(2x-3)^2-(x-3)^3+(4x+1)[(4x)^2-4x.1+1^2]\)
\(=(2x-3)^2-(x-3)^3+(4x)^3+1^3\)
\(=[2(x+2)-7]^2-(x+2-5)^3+8x^3+1\)
\(=(-7)^2-(-5)^3+8.(-2)^3+1=111\)
--------------------
\(B=(3x-y)^3-[x^3+(2y)^3]+(x+3)^2\)
\(=(3.1-2)^3-(1^3+8.2^3)+(1+3)^2=-48\)
----------------
Vì $x=\frac{1}{2}; y=\frac{-1}{2}\Rightarrow x+y=0$
\(C=(x-5y)^2+(2x-3y)^3-(x-y)^3-[(2x)^3+(3y)^3]\)
\(=(x+y-6y)^2+[2(x+y)-5y]^3-(x+y-2y)^3-[8(x^3+y^3)+19y^3]\)
\(=(-6y)^2+(-5y)^3-(-2y)^3-19y^3\)
\(=36y^2-136y^3=36.(\frac{-1}{2})^2-136(\frac{-1}{2})^3=26\)
\(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy.\left(x^2-y^2-2y-1\right)\)
\(=2xy.[x^2-\left(y^2+2y+1\right)]\)
\(=2xy.[x^2-\left(y+1\right)^2]\)
\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)
Vậy chọn đáp án A
chọn A