Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(2\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2\left(x+3\right)=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
Vậy \(x\in\left\{-3;4\right\}\)
@@ Học tốt @@
## Chiyuki Fujito
2.(x+3)(x-4)=0
* 2(x+3)=0 * x-4=0
x+3=0:2 x=0+4
x+3=0 x=4
x=0-3
x=-3
vậy x=-3 hoặc x=4
Ta có : \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4+2x^3+5x^2+10x-6x-12=0\)
\(\Leftrightarrow x^3\left(x+2\right)+5x\left(x+2\right)-6\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+5x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-x^2+x^2-x+6x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-1\right)+x\left(x-1\right)+6\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\)\(x+2=0\)
hoặc \(x-1=0\)
hoặc \(x^2+x+6=0\)
\(\Leftrightarrow\) \(x=-2\)(tm)
hoặc \(x=1\)(tm)
hoặc \(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\)(ktm)
Vậy tập nghiệm của phương trình là \(S=\left\{-2;1\right\}\)
Ta có : \(\frac{\left(5x+3\right)\left(3x+11\right)}{4}-\frac{x-7}{12}=0\)
=> \(\frac{3\left(5x+3\right)\left(3x+11\right)}{12}-\frac{x-7}{12}=0\)
=> \(3\left(5x+3\right)\left(3x+11\right)-\left(x-7\right)=0\)
=> \(3\left(15x^2+9x+55x+33\right)-x+7=0\)
=> \(45x^2+27x+165x+99-x+7=0\)
=> \(45x^2+191x+106=0\)
=> \(45x^2+2.\sqrt{45}x.\frac{191}{2\sqrt{45}}+\frac{191^2}{\left(2\sqrt{45}\right)^2}-\frac{17401}{180}=0\)
=> \(\left(x\sqrt{45}+\frac{191}{2\sqrt{45}}\right)^2-\left(\sqrt{\frac{17401}{180}}\right)^2=0\)
=> \(\left(x\sqrt{45}+\frac{191}{2\sqrt{45}}-\sqrt{\frac{17401}{180}}\right)\left(x\sqrt{45}+\frac{191}{2\sqrt{45}}+\sqrt{\frac{17401}{180}}\right)=0\)
=> \(\left[{}\begin{matrix}x\sqrt{45}+\frac{191}{2\sqrt{45}}-\sqrt{\frac{17401}{180}}=0\\x\sqrt{45}+\frac{191}{2\sqrt{45}}+\sqrt{\frac{17401}{180}}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x\sqrt{45}=-\frac{191}{2\sqrt{45}}+\sqrt{\frac{17401}{180}}\\x\sqrt{45}=-\frac{191}{2\sqrt{45}}-\sqrt{\frac{17401}{180}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{-\frac{191}{2\sqrt{45}}+\sqrt{\frac{17401}{180}}}{\sqrt{45}}\\x=\frac{-\frac{191}{2\sqrt{45}}-\sqrt{\frac{17401}{180}}}{\sqrt{45}}\end{matrix}\right.\)
Vậy phương trình trên có nghiệm là \(\left[{}\begin{matrix}x=\frac{-\frac{191}{2\sqrt{45}}+\sqrt{\frac{17401}{180}}}{\sqrt{45}}\\x=\frac{-\frac{191}{2\sqrt{45}}-\sqrt{\frac{17401}{180}}}{\sqrt{45}}\end{matrix}\right.\) .