Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co \(\frac{33.10^3}{2^3.10^3+7000}=\frac{33.10^3}{8.10^3+7.10^3}=\frac{33.10^3}{15.10^3}=\frac{33}{15}>\frac{3774}{5217}\)
a) Vì 25 > 20 nên \(\frac{25}{20}>1\) ; 25251 < 26261 => \(\frac{25251}{26261}<1\)
\(=>\frac{25}{20}>\frac{25251}{26261}\)
Câu hỏi của bạn rất giống mình. Nếu bạn biết cách giải của 2 phần còn lại rồi thì giải giúp mình nhé ! Mình cảm ơn rất nhiều
\(\frac{33.10^3}{2^3.5.10^3+7000}=\frac{33.10^3}{2^3.5.10^3+7.10^3}=\frac{33.10^3}{10^3\left(2^3.5+7\right)}=\frac{33}{8.5+7}=\frac{33}{47}\)
\(\frac{3774}{5217}=\frac{3774:111}{5217:111}=\frac{34}{47}\)
Vì \(\frac{33}{47}< \frac{34}{47}\Rightarrow\frac{33.10^3}{2^3.5.10^3+7000}< \frac{3774}{5217}\)
\(\frac{33.10^3}{2^3.5.10^3+7000}=\frac{33.10^3}{8.5.10^3+7.10^3}\)
=\(\frac{33.10^3}{10^3\left(40+7\right)}=\frac{33}{47}\)
\(\frac{3774}{5217}=\frac{111.34}{111.47}=\frac{34}{47}\)
Vậy: \(\frac{3774}{5217}>\frac{33.10^3}{2^3.5.10^3+7000}\)
Bạn ghi rõ ràng đề.
33 phần 47 < 3774 phần 5217