Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.2/1.3.2+3.2/3.5.2+3.2/5.7.2+...+3.2/49.51
3/2(2/1.3+2/3.5+2/5.7+....+2/49.51)
3/2(1-1/3+1/3-1/5+1/5-1/7+....+1/49-1/51)
3/2(1-1/51)
3/2 . 50/51
25/17
áp dụng công thức nếu có thừa số thứ 2 ở mẫu trừ đi thừa số thứ 1 bằng số trên tử thi \(\frac{1}{a}-\frac{1}{b}\) ab ở đây là 2 thừa số ở mẫu
VD;3/1.3+3/3.5+...+3/49.51(vì tất cả mẫu trừ cho nhau đều =tử)
nên = 1/1-1/3+1/3+1/5+...+1/49-1/51
=1-1/51
=50/51
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\)
\(A=1-\frac{1}{51}\)
\(A=\frac{50}{51}\)
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(2A=3\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\right)\)
\(2A=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(2A=3\left(1-\frac{1}{51}\right)\)
\(2A=3.\frac{50}{51}\)
\(2A=\frac{50}{17}\Rightarrow A=\frac{25}{17}\)'
A=3/(1.3) + 3/(3.5) + 3/(5.7) +.....+ 3/(49.51)
A=3/2 . [2/(1.3) + 2/(3.5) + 2/(5.7) +.....+ 2/(49.51)]
A=3/2 . (1/1 - 1/3 + 1/3 - 1/5 +1/5 - 1/7 +.....+ 1/49 -1/51)
A=3/2 . (1/1 - 1/51)
A=3/2 . 50/51
A=25/17.
giup minh nha
\(A=\frac{3}{2\cdot4}+\frac{3}{4\cdot6}+...+\frac{3}{48\cdot50}\)---> Mik nghĩ bn ghi nhầm :]
\(A=\frac{3}{2}\left[\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{48\cdot50}\right]\)
\(A=\frac{3}{2}\left[\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{48}-\frac{1}{50}\right]\)
\(A=\frac{3}{2}\left[\frac{1}{2}-\frac{1}{50}\right]=\frac{3}{2}\cdot\frac{12}{25}=\frac{18}{25}\)
Vậy A = 18/25
\(B=\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+...+\frac{5}{49\cdot51}\)
\(B=\frac{5}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\right]\)
\(B=\frac{5}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right]\)
\(B=\frac{5}{2}\left[1-\frac{1}{51}\right]=\frac{5}{2}\cdot\frac{50}{51}=\frac{125}{51}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(=\frac{2}{3}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{51}\right)\)
\(=\frac{2}{3}.\frac{50}{51}=\frac{20}{51}\)
Ủng hộ mk nha !!! ^_^
25/17 mới đúng