Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(\dfrac{30.4^7.3^{29}-5.4^{15}.2^{12}}{54.6^{14}.9^7-12.8^5.7^5}\)
B=\(\dfrac{5.6.\left(2^2\right)^7.3^{29}-5.\left(2^2\right)^{15}.2^{12}}{9.5.\left(2.3\right)^{14}.\left(3^2\right)^7-\left(3.4\right).\left(2^3\right)^5.7^5}\)
B=\(\dfrac{5.\left(2.3\right).2^{14}.3^{19}-5.2^{30}.2^{12}}{3^2.5.2^{14}.3^{14}-3.4.2^{15}.7^5}\)
B=\(\dfrac{5.2^{15}.3^{20}-5.2^{30}.2^{12}}{5.2^{14}.3^{16}-3.2^{17}.7^5}\)
B=\(\dfrac{5.\left(2^{15}.3^{20}-2^{30}.2^{12}\right)}{2^{14}.\left(5.3^{16}-3.2^3.7^5\right)}\)
a) \(-12\left(x-5\right)+7\left(3-x\right)=5\)
\(-12x+60+21-7x=5\)
\(-19x=5-60-21\)
\(-19x=-76\)
\(x=4\)
vậy \(x=4\)
tương tự
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2
=(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2
=(1/2-1/2010).2
=1004/1005
\(a,\frac{5}{6}+\frac{7}{12}-\frac{2}{3}\)
\(=\frac{10}{12}+\frac{7}{12}-\frac{8}{12}\)
\(=\frac{10+7-8}{12}\)
\(=\frac{9}{12}\)
\(=\frac{3}{4}\)
\(b,\frac{3}{4}-1\frac{1}{2}+50\%:\frac{5}{12}\)
\(=\frac{3}{4}-\frac{3}{2}+\frac{1}{2}:\frac{5}{12}\)
\(=\frac{3}{4}-\frac{6}{4}+\frac{1}{2}.\frac{12}{5}\)
\(=\frac{-3}{4}+\frac{6}{5}\)
\(=\frac{-15}{20}+\frac{24}{20}\)
\(=\frac{9}{20}\)
\(c,\frac{2}{7}.5\frac{1}{4}-\frac{2}{7}.3\frac{1}{4}\)
\(=\frac{2}{7}.\left(5\frac{1}{4}-3\frac{1}{4}\right)\)
\(=\frac{2}{7}.\left[\left(5-3\right)+\left(\frac{1}{4}-\frac{1}{4}\right)\right]\)
\(=\frac{2}{7}\left[2+0\right]\)
\(=\frac{2}{7}.2\)
\(=\frac{4}{7}\)
~Study well~
a) \(\frac{5}{6}+\frac{7}{12}-\frac{2}{3}\)=\(\frac{10}{12}+\frac{7}{12}-\frac{8}{12}\)=\(\frac{9}{12}=\frac{3}{4}\)
b) \(\frac{3}{4}-1\frac{1}{2}+50\%:\frac{5}{12}\)=\(\frac{3}{4}-\frac{3}{2}+\frac{1}{2}:\frac{5}{12}\)=\(\frac{3}{4}-\frac{3}{2}+\frac{6}{5}\)=\(\frac{30}{40}-\frac{60}{40}+\frac{48}{40}\)= \(\frac{18}{40}\)=\(\frac{9}{20}\)
c)ghi lại đề hộ mk, mk ko rõ
b)
\(\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
c)
\(\frac{7}{3.4}+\frac{7}{4.5}+.....+\frac{7}{60.61}\)
\(=7\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{60}-\frac{1}{61}\right)\)
\(=7\left(\frac{1}{3}-\frac{1}{61}\right)\)
\(=\frac{406}{183}\)
d)
\(\frac{6}{2.4}+\frac{6}{4.6}+....+\frac{1}{72.74}\)
\(=3\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{72}-\frac{1}{74}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{74}\right)\)
=57/37