Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M x y z b c a D E F
Bạn ghi sai đề (kí hiệu x,y,...) Mình sửa lại cho bạn rồi :)
Ta có : \(S_{ABC}=S_{MBC}+S_{MAB}+S_{MAC}\)
\(S_{MBC}=\frac{1}{2}a.x\Rightarrow ax=2S_{MBC}\)
Tương tự : \(by=2S_{MAC}\) , \(cz=2S_{MAB}\)
\(\Rightarrow ax+by+cz=2\left(S_{MAB}+S_{MBC}+S_{MAC}\right)=2S_{ABC}\) (đpcm)
BẠN TỰ VẼ HÌNH NHA
Giải
Gọi cạnh tam giác đều ABC la a, chiều cao là h.Ta có:
a) Ta có Stam giác BMC+Stam giác CMA+Stam giác AMB =Stam giác ABC
<=>(1/2)ax+(1/2)ay+(1/2)az=(1/2)ah <=> (1/2)a.(x+y+z)=(1/2)ah
<=>x+y+z=h không phụ thuộc vào vị trí của điểm M
b) x2+y2\(\ge\)2xy ; y2+z2\(\ge\)2yz ; z2+x2\(\ge\)2zx
=>2.(x2+y2+z2) \(\ge\)2xy+2xz+2yz
=>3.(x2+y2+z2) \(\ge\)x2+y2+z2+2xy+2xz+2yz
=>x2+y2+z2 \(\ge\)(x+y+z)2/3=h2/3 không đổi
Dấu "=" xảy ra khi x=y=z
Vậy để x2 + y2 + z2 đạt giá trị nhỏ nhất thì M là giao điểm của 3 đường phân giác của tam giác ABC hay M là tâm của tam giác ABC
\(a.\)Ta có: \(S_{\Delta BMC}=\frac{BC.x}{2}\)\(\Rightarrow\)\(x=\frac{2.S_{\Delta MBC}}{BC}\)
\(S_{\Delta BMA}=\frac{BA.z}{2}\)\(\Rightarrow\)\(z=\frac{2.S_{\Delta BMA}}{AB}\)
\(S_{\Delta AMC}=\frac{AC.y}{2}\)\(\Rightarrow\)\(y=\frac{2.S_{\Delta AMC}}{AC}\)
mà \(\Delta ABC\) đều nên AB = BC = CA
suy ra \(x+y+z=\frac{2\left(S_{\Delta AMC}+S_{\Delta BMA}+S_{\Delta BMC}\right)}{AB}\)
suy ra đpcm
Đặt \(A=\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+cz\left(z-x\right)}\)
Từ ax+by+cz=0
=>(ax+by+cz)2=0
=>a2x2+b2y2+c2z2+2axby+2bycz+2czax=0
=>a2x2+b2y2+c2z2=-2(ax+by+byca+czax)
Xét mẫu thức: \(ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2\)
\(=ab\left(x^2-2xy+y^2\right)+bc\left(y^2-2yz+z^2\right)+ca\left(z^2-2zx+x^2\right)\)
\(=abx^2-2abxy+aby^2+bcy^2-2bcyz+bcz^2+caz^2-2cazx+cax^2\)
\(=\left(abx^2+bcz^2\right)+\left(aby^2+acz^2\right)+\left(acx^2+bcy^2\right)-2\left(abxy+bcyz+cazx\right)\)
\(=\left(aby^2+acz^2\right)+\left(abx^2+bcz^2\right)+\left(acx^2+bcy^2\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=\left(a^2x^2+aby^2+acz^2\right)+\left(abx^2+b^2y^2+bcz^2\right)+\left(acx^2+bcy^2+c^2z^2\right)\)
\(=a\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+c\left(ax^2+by^2+cz^2\right)\)
\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)
Do đó: \(A=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2018}}=2018\) (dpcm)
M A B C
a) Ta có : \(S_{AMB}=\frac{cz}{2};S_{BMC}=\frac{ax}{2};S_{MAC}=\frac{by}{2}\)
\(\Rightarrow S_{AMB}+S_{BMC}+S_{MAC}=\frac{cz+ax+by}{2}=S_{ABC}\)
\(\Rightarrow ax+by+cz=2S_{ABC}\)(đpcm)
b) Áp dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(ax+by+cz\right)\ge\left(\sqrt{\frac{a}{x}.ax}+\sqrt{\frac{b}{y}.by}+\sqrt{\frac{c}{z}.cz}\right)^2=\left(a+b+c\right)^2\)
\(\Rightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\frac{\left(a+b+c\right)^2}{ax+by+cz}=\frac{2\left(\frac{a+b+c}{2}\right)^2}{\frac{ax+by+cz}{2}}=\frac{2p^2}{S}\)(đpcm)