K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

a2 + b2 + c2 + d2 + e2 \(\ge\) a(b+c+d+e)

Xét: 4(a2+b2+c2+d2+e2) - 4(ab+ac+ad+ae)

= 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae

= (a2+4b2-4ab) + (a2+4c2-4ac) + (a2+4d2-4ad) + (a2+4e2-4ae)

= (a-2b)2 + (a-2c)2 + (a-2d)2 + (a-2e)2 \(\ge\) 0

=> 4(a2+b2+c2+d2+e2) \(\ge\) 4(ab+ac+ad+ae)

=> a2+b2+c2+d2+e2 \(\ge\) ab + ac + ad + ae

27 tháng 8 2017
  • Nguyễn Huy Tú38GP
  • Hồng Phúc Nguyễn34GP
  • Akai Haruma33GP
  • Mysterious Person
  • Nguyễn Nhã Hiếu15GP
  • ๖ۣۜĐặng♥๖ۣۜQuý13GP
  • Đoàn Đức Hiếu11GP
  • Trần Thọ Đạt
  • Nguyễn Đình Dũng
16 tháng 5 2019

b) Áp dụng bđt bunhiacopxki ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2=\left(a+b+c\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

6 tháng 2 2020

\(\Rightarrow a^2+b^2+c^2+d^2+2\left(ab+bc+dc+ad\right)=4\)(*)

Có 2(ab+bc+dc+ad)<=2(a^2+b^2+c^2+d^2 )(**)

Cộng 2 vế của (**) cho a^2+b^2+c^2+d^2 có

3(a^2+b^2+c^2+d^2)>=4

7 tháng 4 2017

\(a\ge b\Leftrightarrow a^2\ge b^2\Leftrightarrow a^2-b^2\ge0\)

\(c\ge d\Leftrightarrow c^2\ge d^2\Leftrightarrow c^2-d^2\ge0\)

\(-ab+ac\le0\)

\(-ad-cd\le0\)

\(-bc+bd\le0\)

\(\Rightarrow2\left(-ab+ac-ad-cd-bc+bd\right)\le0\)

\(\Rightarrow a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)

Bằng nhau khi và chỉ khi a = b = c = d

Dấu lớn xảy ra khi a> b >c > d

***Mình chẳng hiểu bài làm của mình đâu. Mong bạn thông cảm. Bạn mà hiểu được thì qủa là thiên tài limdim***********

9 tháng 4 2017

đăng từng câu 1 thôi, nhiều nhất là 3 câu/ 1 lần hỏi vì đâu có giới hạn số lần hỏi

9 tháng 4 2017

mk sẽ rút kinh nghiệm cám ơn

9 tháng 5 2018

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\ge0\)

\(\Rightarrow\left(\dfrac{a^2}{4}-ab+b^2\right)+\left(\dfrac{a^2}{4}-ac+c^2\right)+\left(\dfrac{a^2}{4}-ad+d^2\right)+\left(\dfrac{a^2}{4}-ae+e^2\right)\)

\(\Rightarrow\left(\dfrac{a}{2}-b\right)^2+\left(\dfrac{a}{2}-c\right)^2+\left(\dfrac{a}{2}-d\right)^2+\left(\dfrac{a}{2}-e\right)^2\ge0\) (đúng)

Dấu "=" xảy ra khi: \(\dfrac{a}{2}=b=c=d=e\)

9 tháng 5 2018

\(a^2+b^2+c^2+d^2+e^2\ge a.\left(b+c+d+e\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) ( luôn đúng)

17 tháng 9 2017

\(a,\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)

Do đó \(\left(a+b\right)^2\ge4ab\)(đpcm)

Các câu sau tương tự

21 tháng 3 2019

Ý 3 bạn bỏ dòng áp dụng....ta có nhé

\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )

Dấu " = " xảy ra <=> a=b=c=d=0

6) Sai đề

Sửa thành:\(x^2-4x+5>0\)

\(\Leftrightarrow\left(x-2\right)^2+1>0\)

7) Áp dụng BĐT AM-GM ta có:

\(a+b\ge2.\sqrt{ab}\)

Dấu " = " xảy ra <=> a=b

\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)

Chứng minh tương tự ta có:

\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)

\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)

Dấu " = " xảy ra <=> a=b=c

Cộng vế với vế của các BĐT trên ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)

Dấu " = " xảy ra <=> a=b=c

21 tháng 3 2019

1)\(x^3+y^3\ge x^2y+xy^2\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)

Dấu " = " xảy ra <=> x=y

2) \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> x=y

3) Áp dụng BĐT AM-GM ta có:

\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)

\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)

\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)

Cộng vế với vế của các bất đẳng thức trên ta được:

\(a^2+b^2+1\ge ab+a+b\)

Dấu " = " xảy ra <=> a=b=1

4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)

Dấu " = " xảy ra <=> a=b=c=1/2

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

a)

\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)

\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)

\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)

\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)

Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)

b)

Xét hiệu

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)

\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)

Dấu "=" xảy ra khi $x=y$

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

c)

Xét hiệu:

\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)

\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)

\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)

\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)

Dấu "=" xảy ra khi \(ad=bc\)

d)

Xét hiệu:

\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)

\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)

\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)

\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

18 tháng 7 2017

Ta có: \(2a^2+b^2+c^2+d^2+e^2=a\left(b+c+d+e\right)\)

\(\Rightarrow8a^2+4b^2+4c^2+4d^2+4e^2=4ab+4ac+4ad+4ae\)

\(\Rightarrow8a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae=0\)

\(\Rightarrow4a^2+\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)\)

\(+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)=0\)

\(\Rightarrow4a^2+\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2=0\) (1)

\(4a^2\ge0;\left(a-2b\right)^2\ge0;\left(a-2c\right)^2\ge0;\left(a-2d\right)^2\ge0;\left(a-2e\right)^2\ge0\)

với mọi a,b,c,d,e

=> (1) xảy ra \(\Leftrightarrow4a^2=0;\left(a-2b\right)^2=0;\left(a-2c\right)^2=0;\left(a-2d\right)^2=0;\left(a-2e\right)^2=0\)(2)

\(\Rightarrow a=0\) \(\Rightarrow\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left(0-2b\right)^2=0\\\left(0-2c\right)^2=0\\\left(0-2d\right)^2=0\\\left(0-2e\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}0-2b=0\\0-2c=0\\0-2d=0\\0-2e=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2b=0\\2c=0\\2d=0\\2e=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=0\\c=0\\d=0\\e=0\end{matrix}\right.\Rightarrow a=b=c=d=e=0\)

Vậy a=b=c=d=e=0

18 tháng 7 2017

\(2a^2+b^2+c^2+d^2+e^2=a\left(b+c+d+e\right)\)

\(\Leftrightarrow2a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)=0\)

\(\Leftrightarrow2a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae=0\)

Nhân 2 với hai vế của đẳng thức, ta có:

\(4a^2+2b^2+2c^2+2d^2+2e^2-2ab-2ac-2ad-2ae=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(a^2-2ae+e^2\right)+\left(b^2+c^2+d^2+e^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(a-e\right)^2+\left(b^2+c^2+d^2+e^2\right)=0\)

Ta gọi biểu thức trên là *

Do \(\left(a-b\right)^2\ge0\) ;

\(\left(a-c\right)^2\ge0\);

\(\left(a-d\right)^2\ge0\);

\(\left(a-e\right)^2\ge0\);

\(\left(b^2+c^2+d^2+e^2\right)\ge0\);

Do các phép tính trên đều là phép cộng, phép trừ

Mà kết quả lại bằng 0

Nên * xảy ra khi a-b=0; a-c=0; a-d=0; a-e=0

và b+c+d+e=0

Mà các số giống nhau hiệu = 0 =>a=b=c=d=e(**)

và các số dương cộng lại bằng 0 =>b,c,d.e=0(***)

Từ (**) và ( ***)=> a=b=c=d=0(dpcm)