Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$G=5x^2+8xy+5y^2-2x+2y=4(x^2+2xy+y^2)+x^2-2x+y^2+2y$
$=4(x^2+2xy+y^2)+(x^2-2x+1)+(y^2+2y+1)-2$
$=4(x+y)^2+(x-1)^2+(y+1)^2-2$
$\geq -2$
Vậy $G_{\min}=-2$. Giá trị này đạt tại $x+y=x-1=y+1=0$
$\Leftrightarrow (x,y)=(1,-1)$
\(a\text{) }pt\Leftrightarrow\left(y^2+2y+1\right)+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
\(\Leftrightarrow y+1=0\text{ và }2^x-1=0\)
\(\Leftrightarrow y=-1\text{ và }x=0\)
\(b\text{) }pt\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow x+y=0\text{ và }x-1=0\text{ và }y+1=0\)
\(\Leftrightarrow x=1\text{ và }y=-1\)
1)\(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)
2)\(2y^3+8y^2+8y=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\)
3)\(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
4)\(24x^3-3=3\left(8x^3-1\right)=3\left(2x-1\right)\left(4x^2+2x+1\right)\)
5)\(x^5+27x^2=x^2\left(x^3+27\right)=x^2\left(x+3\right)\left(x^2-3x+9\right)\)
1: \(=\left(x-1\right)\left(3x+7x^2\cdot2\right)=\left(x-1\right)\cdot x\cdot\left(3+14x\right)\)
2: \(=\left(x-y\right)\left(x^2+1\right)\)
3: \(=4x\cdot\left(x-2y\right)-8y\left(x-2y\right)\)
\(=4\left(x-2y\right)\left(x-2y\right)=4\left(x-2y\right)^2\)
5: \(=x^2\left(25-\dfrac{1}{81}y^2\right)=x^2\left(5-\dfrac{1}{9}y\right)\left(5+\dfrac{1}{9}y\right)\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
c.
\(4y^2+1=4y\)
\(\Leftrightarrow4y^2-4y+1=0\)
\(\Leftrightarrow4y^2-2y-2y+1=0\)
\(\Leftrightarrow2y\left(2y-1\right)-\left(2y-1\right)=0\)
\(\Leftrightarrow\left(2y-1\right)^2=0\)
\(\Leftrightarrow y=0\)
d.
\(y^2-2y=80\)
\(\Leftrightarrow y^2-2y-80=0\)
\(\Leftrightarrow y^2-10y+8y-80=0\)
\(\Leftrightarrow y\left(y-10\right)+8\left(y-10\right)=0\)
\(\Leftrightarrow\left(y+8\right)\left(y-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+8=0\\y-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-8\\y=10\end{matrix}\right.\)