Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) }\left(x-1\right)\left(x^2+y\right)-\left(x^2-y\right)\left(x-2\right)-x\left(x+2y\right)+3\left(y-5\right)\)
\(=\left(x^3+xy-x^2-y\right)-\left(x^3-2x^2-xy+2y\right)-\left(x^2+2xy\right)+\left(3y-15\right)\)
\(=x^3+xy-x^2-y-x^3+2x^2+xy-2y-x^2-2xy+3y-15\)
\(=\left(x^3+x^3\right)+\left(-x^2+2x^2-x^2\right)+\left(xy+xy-2xy\right)+\left(-y-2y+3y\right)-15\)
\(=0+0+0+0-15\)
\(=-15\)
\(\text{b) }6\left(x^3y+x-3\right)-6x\left(2xy^3+1\right)-3x^2y\left(2x-4y^2\right)\)
\(=\left(6x^3y+6x-18\right)-\left(12x^2y^3+6x\right)-\left(6x^3y-12x^2y^3\right)\)
\(=6x^3y+6x-18-12x^2y^3-6x-6x^3y+12x^2y^3\)
\(=\left(6x^3y-6x^3y\right)+\left(6x-6x\right)+\left(-12x^2y^3+12x^2y^3\right)-18\)
\(=0+0+0-18\)
\(=-18\)
\(\text{c) }\left(x^2+2xy+4y^2\right)\left(x-2y\right)-6\left(\frac{1}{2}-\frac{4}{3}y^3\right)\)
\(=\left(x^3-2x^2y+2x^2y-4xy^2+4xy^2-8y^3\right)-\left(3-8y^3\right)\)
\(=\left(x^3-8y^3\right)-\left(3-8y^3\right)\)
\(=x^3-8y^3-3+8y^3\)
\(=x^3-3\)
lê thị mỹ vân:
a) Theo đề sửa:
$A=x^2+2y^2-2xy+4x-3y+1$
$=(x^2-2xy+y^2)+y^2+4x-3y+1$
$=(x-y)^2+4(x-y)+y^2+y+1$
$=(x-y)^2+4(x-y)+4+y^2+y+\frac{1}{4}-\frac{13}{4}$
$=(x-y+2)^2+(y+\frac{1}{2})^2-\frac{13}{4}$
$\geq \frac{-13}{4}$
Vậy GTNN của $A$ là $\frac{-13}{4}$. Giá trị này đạt được tại $x-y+2=y+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-5}{2}; y=\frac{-1}{2}$
Lời giải:
a) Biểu thức không có min. Bạn xem lại đề.
b)
$B=2x^2+3y^2-4xy+4x+4y-2$
$=2(x^2-2xy+y^2)+y^2+4x+4y-2$
$=2(x-y)^2+4(x-y)+y^2+8y-2$
$=2[(x-y)^2+2(x-y)+1]+(y^2+8y+16)-20$
$=2(x-y+1)^2+(y+4)^2-20$
$\geq 0+0-20=-20$
Vậy $B_{\min}=-20$
Giá trị này đạt được khi $x-y+1=0$ và $y+4=0$
$\Leftrightarrow (x,y)=(-5,-4)$
Tìm GTNN chủa biểu thức:
a, A=x2+6y2-2xy-12x+2y+45
b, B=x2-2xy+3y2-2xy-10y+20
c, C=x2+4y2-2xy-10x+4y+32
a: \(=\left(-\dfrac{6}{2}\right)\cdot\dfrac{x^3}{x}\cdot\dfrac{y^2}{y^2}=-3x^2\)
b: \(=\left(-\dfrac{1}{4}:\dfrac{1}{2}\right)\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^3}{y^2}=-\dfrac{1}{2}xy\)
c: \(=\dfrac{8}{4}\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^5}{y^4}=2xy\)
2xy - x^2 + 3y^2-4y +1 = (y+x-1)(3y-x-1)