Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4-x^4+y^4\)
\(=\left(x^4-x^4\right)+\left(y^4-y^4\right)+\left(x^3y-x^3y\right)+\left(xy^3-xy^3\right)+\left(x^2y^2-x^2y^2\right)=0\)
b.
\(\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)=2+4x-x-2x^2+1+x-x^4-x^3+5x^2+5\)
\(=-x^4-x^3+\left(5x^2-2x^2\right)+\left(4x-x+x\right)+\left(1+2+5\right)=-x^4-x^3+3x^2+4x+8\)
c.
\(\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35=x^3+2x^2-7x-14-2x^2+28x+x-14+x^3-2x^2-22x+35\)
\(=\left(x^3+x^3\right)+\left(2x^2-2x^2\right)+\left(28x-22x-7x+x\right)+\left(35-14\right)=2x^3+21\)
\(A=2x^2+x-5y+4\)
Thay x = 1/2 ; y = -1/52 vào biểu thức trên ta được :
\(=2.\frac{1}{4}+\frac{1}{2}-5.\frac{-1}{52}+4=1+\frac{5}{52}+4\)
\(=5+\frac{5}{52}=\frac{260}{52}+\frac{5}{52}=\frac{265}{52}\)
\(B=2x^2-3y^2+4z^3\)
Thay x = 2 ; y = z = -23 vào biểu thức trên ta được :
\(=2.4-3.169+4.2197=8-507+8788=8289\)
tương tự với c, bài này ko khó, tại số to nên tính có khi nhầm lẫn vài chỗ thôi.
Cát Tường Lê:
Đoạn \(2x^4+x^3y\) là do:
\(2x^4+xy\left(x^2+y^2\right)=2x^4+xy.x^2+xy.y^2=2x^4+x^3y+xy^3\)
Đoạn \(2ax^2-2axy\) là do:
\(-2ax\left(x+y\right)=2ax.x-2ax.y=-2ax^2-2axy\)
Cái này chỉ là khai triển phá ngoặc thông thường thôi. Bạn vừa xem lời giải vừa tập khai triển ra giấy để dễ hiểu hơn.
a) \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)
\(=X^2y+x+xy^2-y-x^2y-xy^2\)
\(=x-y\)
Bài 1:
a) Ta có: \(2x=5y.\)
=> \(\frac{x}{y}=\frac{5}{2}\)
=> \(\frac{x}{5}=\frac{y}{2}\) và \(x.y=90.\)
Đặt \(\frac{x}{5}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)
Có: \(x.y=90\)
=> \(5k.2k=90\)
=> \(10k^2=90\)
=> \(k^2=90:10\)
=> \(k^2=9\)
=> \(k=\pm3.\)
TH1: \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.5=15\\y=3.2=6\end{matrix}\right.\)
TH2: \(k=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).5=-15\\y=\left(-3\right).2=-6\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(15;6\right),\left(-15;-6\right).\)
e) Ta có: \(\frac{x}{y}=\frac{4}{5}.\)
=> \(\frac{x}{4}=\frac{y}{5}\) và \(x.y=20.\)
Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)
Có: \(x.y=20\)
=> \(4k.5k=20\)
=> \(20k^2=20\)
=> \(k^2=20:20\)
=> \(k^2=1\)
=> \(k=\pm1.\)
TH1: \(k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.4=4\\y=1.5=5\end{matrix}\right.\)
TH2: \(k=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right).4=-4\\y=\left(-1\right).5=-5\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(4;5\right),\left(-4;-5\right).\)
Chúc bạn học tốt!