K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

2x4-9x3+14x2-9x+2=0

<=> 2x4-2x3-7x3+7x2+7x2-7x-2x+2=0

<=> 2x3(x-1)-7x2(x-1)+7x(x-1)-2(x-1)=0

<=> (x-1)(2x3-7x2+7x-2)=0

<=> (x-1)[2x3-2x2-5x2+5x+2x-2]=0

<=> (x-1)[2x2(x-1)-5x(x-1)+2(x-1)]=0

<=> (x-1)2(2x2-5x+2)=0

<=> (x-1)2(2x2-4x-x+2)=0

<=> (x-1)2[(2x(x-2)-(x-2)]=0

<=> (x-1)2(x-2)(2x-1)=0

=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\x-2=0\\2x-1=0\end{cases}}\) <=> \(\hept{\begin{cases}x_1=1\\x_2=2\\x_3=\frac{1}{2}\end{cases}}\)

AH
Akai Haruma
Giáo viên
29 tháng 1 2020

Lời giải:

$2x^4-9x^3+14x^2-9x+2=0$

$\Leftrightarrow 2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0$

$\Leftrightarrow 2x^3(x-1)-7x^2(x-1)+7x(x-1)-2(x-1)=0$

$\Leftrightarrow (x-1)(2x^3-7x^2+7x-2)=0$

$\Leftrightarrow (x-1)[2(x^3-1)-7x(x-1)]=0$

$\Leftrightarrow (x-1)(x-1)(2x^2+2x+2-7x)=0$

$\Leftrightarrow (x-1)^2(2x^2-5x+2)=0$

$\Leftrightarrow (x-1)^2(2x^2-4x-x+2)=0$

$\Leftrightarrow (x-1)^2[2x(x-2)-(x-2)]=0$

$\Leftrightarrow (x-1)^2(2x-1)(x-2)=0$

\(\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{1}{2}\\ x=2\end{matrix}\right.\)

 2x^4-9x^3+14x^2-9x+2=0 
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1 
nên phân tích đc nhân tử là (x-1) 
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0 
<=> x=1 và 2x^3-7x^2+7x-2=0 
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1) 
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0 
<=> x=1 và 2x^2-5x+2=0 
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0 
<=> (x-5/4)^2 - 9/16 = 0 
<=> (x-5/4)^2 - (3/4)^2 = 0

23 tháng 12 2019

\(2x^3+9x^2+14x+5=0\)

\(\Leftrightarrow2x^3+x^2+8x^2+4x+10x+5=0\)

\(\Leftrightarrow x^2\left(2x+1\right)+4x\left(2x+1\right)+5\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2+4x+5\right)\)=0

\(\Leftrightarrow...\)

Chắc tới đây được rồi :)

3 tháng 2 2017

a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)

=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)

=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)

=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)

=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)

3 tháng 2 2017

\(b...x^3-19x+30=0\)

\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)

=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)

=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)

=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)

=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)

Vậy x=-5;2;3

22 tháng 9 2020

a) x3 - 9x2 + 14x = 0

<=> x( x2 - 9x + 14 ) = 0

<=> x( x2 - 2x - 7x + 14 ) = 0

<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0

<=> x( x - 2 )( x - 7 ) = 0

<=> x = 0 hoặc x = 2 hoặc x = 7

b) x3 - 5x2 + 8x - 4 = 0

<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0

<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0

<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0

<=> x( x - 2 )2 - ( x - 2 )2 = 0

<=> ( x - 2 )2( x - 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

c) x4 - 2x3 + x2 = 0

<=> x2( x2 - 2x + 1 ) = 0

<=> x2( x - 1 )2 = 0

<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

d) 2x3 + x2 - 4x - 2 = 0

<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0

<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0

<=> ( 2x + 1 )( x2 - 2 ) = 0

<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)