K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

a , \(5x^2+9y^2-12xy-6x+9=0\)

\(\Leftrightarrow25x^2+45y^2-60xy-30x+45=0\)

\(\Leftrightarrow\left(5x\right)^2-2.5.\left(6y+3\right)+\left(6y+3\right)^2+9y^2-36y+36=0\)

\(\Leftrightarrow\left(5x-6y-3\right)^2+9\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(5x-6y-3\right)^2+9\left(y-2\right)^2=0\)

Vì \(\left\{{}\begin{matrix}\left(5x-6y-3\right)^2\ge0\\9\left(y-2\right)^2\ge0\end{matrix}\right.\Rightarrow\left(5x-6y-3\right)^2+9\left(y-2\right)^2\ge0\)

Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}5x-6y-3=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy ...

Câu b thì sao bạn?

18 tháng 8 2017

\(x^2+y^2+26+10x+2y=0\)

\(\Leftrightarrow\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)( do \(\left(x+5\right)^2\ge0;\left(y+1\right)^2\ge0\))

\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

5 tháng 9 2016

2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0  

(x2 + y2 + z2 + 2xy + 2xz + 2yz) + (x2 + 10x + 25) + (y2+ 6y + 9) = 0  

( x + y + z)2 + ( x + 5)2 + (y + 3)2 = 0

( x + y + z)2 = 0 ;

( x + 5)2 = 0 ;

(y + 3)2 = 0

vậy x = - 5 ; y = -3; z = 8 

16 tháng 6 2017

Tìm x, y, z biết rằng: 2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0

                                Giải

2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0 

(x2 + y2 + z2 + 2xy + 2xz + 2yz) + (x2 + 10x + 25) + (y2+ 6y + 9) = 0

 ( x + y + z)2 + ( x + 5)2 + (y + 3)2 = 0 

( x + y + z)2 = 0 ; ( x + 5)2 = 0 ; (y + 3)2 = 0

x = - 5 ; y = -3; z = 8 

17 tháng 6 2015

Mình giải cho bạn ở http://olm.vn/hoi-dap/question/104690.html rồi nha

18 tháng 6 2015

Chọn đúng cho mình đi.

Đúng nha

12 tháng 10 2019

a) Áp dụng BĐT Cauchy cho 2 số dương:

\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=2xy\)

\(y^2+z^2\ge2\sqrt{\left(yz\right)^2}=2yz\)

\(x^2+z^2\ge2\sqrt{\left(xz\right)^2}=2xz\)

Cộng từ vế của các BĐT trên:

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=y\end{cases}}\Leftrightarrow x=y=z\))

12 tháng 10 2019

b) \(2x^2+2y^2+z^2+2xy+2yz+2xz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+10x+25\right)\)

\(+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)(1)

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)nên (1) xảy ra

\(\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}\)

Bài làm

a) A = x2 + 2y2 - 6x + 8y + 25

A = ( x2 + 6x + 9 ) + 2( y2 + 4y + 4 ) + 8 

A = ( x + 3 )2 + 2( y + 2 )2 + 8 > 8 

Dấu " = " xảy ra <=> x = -3 ; y = -2.

Vậy AMin = 8 khi x = -3; y = -2

Mấy câu sau tương tự, tự giải theo, bh duyệt bài bên lazi đây, 

29 tháng 6 2019

a) \(\Leftrightarrow4x^2+2y^2+4xy-20x-8y+26=0\)

\(\Leftrightarrow4x^2+4x\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+2y^2-8y+26=0\)

\(\Leftrightarrow\left(2x+y-5\right)^2+y^2+2y+1=0\)

\(\Leftrightarrow\left(2x+y-5\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y-5=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\) ( TM )

b) \(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)+\left(z^2-2z+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+3=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\\z=1\end{matrix}\right.\) ( TM )

c) \(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+2x+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(z-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\\z=2\end{matrix}\right.\) ( TM )

27 tháng 6 2016

a )x2+2y2-2xy+2x-4y+2=0 
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0 
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>x-y+1=0 va y-1=0 
<=>x=y-1 y=1 
<=>x=1-1=0 y=1