Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(2x^4+3x^3-x^2+3x+2=0\)
\(\Rightarrow2x^4+x^3+2x^3+x^2-2x^2-x+4x+2=0\)
\(\Rightarrow x^3\left(2x+1\right)+x^2\left(2x+1\right)-x\left(2x+1\right)+2\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+x^2-x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+2x^2-x^2-2x+x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Rightarrow\left(2x+1\right)\left(x+2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\x^2-x+1=0\end{matrix}\right.\)
Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x
\(\Rightarrow x^2-x+1\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)
3) \(\left(x+2\right)^4+\left(x+4\right)^4=16\)
Đặt x + 3 = a, ta được
\(\left(a-1\right)^4+\left(a+1\right)^4=16\)
\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=16\)
\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2=16\)
\(\Rightarrow a^4+4a^2+1+2a^2-4a^3-4a+a^4+4a^2+1+2a^2+4a^3+4a=16\)
\(\Rightarrow2a^4+2.4a^2+2+2.2a^2=16\)
\(\Rightarrow2a^4+8a^2+4a^2+2=16\)
\(\Rightarrow2a^4+12a^2+2-16=0\)
\(\Rightarrow2a^4+12a^2-14=0\)
\(\Rightarrow2a^4-2a^2+14a^2-14=0\)
\(\Rightarrow2a^2\left(a^2-1\right)+14\left(a^2-1\right)=0\)
\(\Rightarrow\left(a^2-1\right)\left(2a^2+14\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right).2\left(a^2+7\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+7=0\end{matrix}\right.\)
Vì \(a^2\ge0\) với mọi a
\(\Rightarrow a^2+7\ge7\) với mọi a
\(\Rightarrow a^2+7\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+3-1=0\\x+3+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
+) (5x-1). (2x+3)-3. (3x-1)=0
10x^2+15x-2x-3 - 9x+3=0
10x^2 +8x=0
2x(5x+4)=0
=> x=0 hoặc x= -4/5
+) x^3 (2x-3)-x^2 (4x^2-6x+2)=0
2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0
-2x^4 + 3x^3-2x^2=0
x^2(-2x^2+x-2)=0
-2x^2(x-1)^2=0
=> x=0 hoặc x=1
+) x (x-1)-x^2+2x=5
x^2 -x -x^2+2x=5
x=5
+) 8 (x-2)-2 (3x-4)=25
8x - 16-6x+8=25
2x=33
x=33/2
Ít thôi -..-
a) ( 3x + 2 )( 2x + 9 ) - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )
<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )
<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4
<=> 12x + 15 = 2x + 5
<=> 12x - 2x = 5 - 15
<=> 10x = -10
<=> x = -1
b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )
<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20
<=> 3x2 - 12x - 2 = 3x2 - 17x + 20
<=> 3x2 - 12x - 3x2 + 17x = 20 + 2
<=> 5x = 22
<=> x = 22/5
c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8
<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
<=> 12x + 16 = -8
<=> 12x = -24
<=> x = -2
d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16
<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16
<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16
<=> 8x2 - 9x - 4 = 16
<=> 8x2 - 9x - 4 - 16 = 0
<=> 8x2 - 9x - 20 = 0
( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm
2 là nghiệm vô tỉ =) )
a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)
=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)
=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4
=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)
=> 12x + 15 = 2x + 5
=> 12x + 15 - 2x - 5 = 0
=> 10x + 10 = 0
=> 10x = -10 => x = -1
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)
=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20
=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20
=> 3x2 - 12x - 2 = 3x2 - 17x + 20
=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0
=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0
=> 5x - 22 = 0
=> 5x = 22 => x = 22/5
c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8
=> x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 + 12x = -8
=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8
=> 12x + 16 = -8
=> 12x = -24
=> x = -2
Còn bài cuối làm nốt
a. Ta có: \(x^2-10x+26+y^2+2y=0\Leftrightarrow\left(x^2-10x+25\right)+\left(y^2+2y+1\right)=0\\ \)
\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\Rightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}}\)
b. \(\left(2x+5\right)^2-\left(x-7\right)^2=0\Leftrightarrow\left(2x+5+x-7\right).\left(2x+5-x+7\right)=0\)
\(\Leftrightarrow\left(3x-2\right).\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-12\end{cases}}}\)
c. \(25.\left(x-3\right)^2=49.\left(1-2x\right)^2\Leftrightarrow\left(5x-15\right)^2=\left(7-14x\right)^2\Leftrightarrow\left(5x-15\right)^2-\left(7-14x\right)^2=0\)
\(\Leftrightarrow\left(5x-15-7+14x\right).\left(5x-15+7-14x\right)=0\Leftrightarrow\left(19x-22\right).\left(-9x-8\right)=0\)
\(\Leftrightarrow\left(19x-22\right).\left(9x+8\right)=0\Leftrightarrow\orbr{\begin{cases}19x-22=0\\9x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{22}{19}\\x=-\frac{8}{9}\end{cases}}}\)
d. \(\left(x+2\right)^2=\left(3x-5\right)^2\Leftrightarrow\left(x+2\right)^2-\left(3x-5\right)^2=0\Leftrightarrow\left(x+2+3x-5\right).\left(x+3-3x+5\right)=0\)
\(\Leftrightarrow\left(4x-3\right).\left(8-2x\right)=0\Leftrightarrow\orbr{\begin{cases}4x-3=0\\8-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=4\end{cases}}}\)
e. \(x^2-2x+1=16\Leftrightarrow\left(x-1\right)^2-16=0\Leftrightarrow\left(x-1-4\right).\left(x-1+4\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
b \(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
hay \(x\in\left\{0;2\right\}\)
c: \(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
=>(x-8)(3x+2)=0
=>x=8 hoặc x=-2/3
d: \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
=>x=2 hoặc x=1
e: \(\Leftrightarrow x\left(x^2-11x+30\right)=0\)
=>x(x-5)(x-6)=0
hay \(x\in\left\{0;5;6\right\}\)
b: \(\Leftrightarrow x\left(x^3-2x^2+10x-20\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
hay \(x\in\left\{0;2\right\}\)
c: \(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
=>(x-8)(3x+2)=0
hay \(x\in\left\{8;-\dfrac{2}{3}\right\}\)
d: \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
=>x=1 hoặc x=2
5)\(\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\Leftrightarrow\dfrac{3\left(x-3\right)}{15}=\dfrac{90-5\left(1-2x\right)}{15}\)
\(\Leftrightarrow\)3x-9=90-5+10x\(\Leftrightarrow\)3x-10x=90-5+9\(\Leftrightarrow\)-7x=94\(\Leftrightarrow\)x=\(-\dfrac{94}{7}\)
Vậy tập nghiệm của PT là S={\(-\dfrac{94}{7}\)}
6)\(\dfrac{3x-2}{6}-5=3-\dfrac{2\left(x+7\right)}{4}\Leftrightarrow\dfrac{2\left(3x-2\right)-60}{12}=\dfrac{36-6\left(x+7\right)}{12}\)\(\Leftrightarrow\)6x-4-60=36-6x-42\(\Leftrightarrow\)6x+6x=36-42+64\(\Leftrightarrow\)12x=58\(\Leftrightarrow\)x=\(\dfrac{29}{6}\)
Vậy tập nghiệm của PT là S={\(\dfrac{29}{6}\)
7)\(\dfrac{3x-7}{2}+\dfrac{x+1}{3}=-16\Leftrightarrow\dfrac{3\left(3x-7\right)+2\left(x+1\right)}{6}=\dfrac{-96}{6}\)
\(\Leftrightarrow\)9x-21+2x+2=-96\(\Leftrightarrow\)11x=-96+19\(\Leftrightarrow\)11x=-77\(\Leftrightarrow\)x=-7
Vậy tập nghiệm của PT là S={-7}
8)\(x-\dfrac{x+1}{3}=\dfrac{2x+1}{5}\Leftrightarrow\dfrac{15x-5\left(x+1\right)}{15}=\dfrac{3\left(2x+1\right)}{15}\)
\(\Leftrightarrow\)15x-5x-5=6x+3\(\Leftrightarrow\)10x-6x=5+8\(\Leftrightarrow\)4x=8\(\Leftrightarrow\)x=2
Vậy tập nghiệm của PT là S={2}
1)2x+x+12=0\(\Leftrightarrow\)3x=-12\(\Leftrightarrow\)x=-4
vậy tập nghiệm của PT là S={-4}
2)x-5=3-x\(\Leftrightarrow\)x+x=3+5\(\Leftrightarrow\)2x=8\(\Leftrightarrow\)x=4
Vậy tập nghiệm của PT là S={4}
3)2x-(3-5x)=4(x+3)\(\Leftrightarrow\)2x-3+5x=4x+12\(\Leftrightarrow\)7x-4x=12+3\(\Leftrightarrow\)3x=15\(\Leftrightarrow\)x=5
Vậy tập nghiệm của PT là S={5}
4)\(\dfrac{2x+3}{3}=\dfrac{5-4x}{2}\Leftrightarrow\dfrac{2\left(2x+3\right)}{6}=\dfrac{3\left(5-4x\right)}{6}\)
\(\Leftrightarrow\)4x+6=15-12x\(\Leftrightarrow\)4x+12x=15-6\(\Leftrightarrow\)16x=9\(\Leftrightarrow\)x=\(\dfrac{9}{16}\)
Vậy tập nghiệm của PT là S={\(\dfrac{9}{16}\)}
số 8 trong dãy số trên thuộc dạng 800000 đọc là: tám trăm nghìn
t i c k nha!! 536457567586876968978987979578674
\(1.\left(x-2\right)\left(x-1\right)=x\left(2x+1\right)+2\)
\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)
\(\Leftrightarrow x^2-2x^2-3x-x=-2+2\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow x\left(-x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\-x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)Vậy S={-4;0}
\(2.\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-8x=0\)
\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)
\(\Leftrightarrow0=0\)(luôn đúng vs mọi giá trị của x)
\(3.\left(2x-1\right)\left(x^3-x+1\right)=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-2x^2+2x-x^3+x-1=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-x^3-2x^2+3x-1=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-x^3-2x^3-2x^2+3x^2+3x-1-16=0\)
\(\Leftrightarrow2x^4-3x^3+x^2+3x-17=0\)
Cái này là phương trình bậc 4 lận, Giải hơi mất thời gian
\(\left(2x+5\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left(2x+5\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x+5-x-3\right).\left(2x+5+x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right).\left(3x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\3x+8=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\3x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=\frac{-8}{3}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3;\frac{-8}{3}\right\}\)
\(\left(x^4-16\right).\left(x^3-1\right).\left(x+3\right)=0\)
\(\Leftrightarrow x^4-16=0\)hoặc \(x^3-1=0\)hoặc \(x+3=0\)
\(\Leftrightarrow x=2\)hoặc \(x=1\)hoặc \(x=-3\)
Vậy tập nghiêm của phương trình là \(S=\left\{2;1;-3\right\}\)
\(\left(2x+5\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left(2x+5\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x+5-x-3\right)\left(2x+5+x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+8\right)=0\Leftrightarrow x=-2orx=-\frac{8}{3}\)
Vậy tập nghiệm của phương trình là S = { -2 ; -8/3 }
\(\left(x^4-16\right)\left(x^3-1\right)\left(x+3\right)=0\)
TH1 : \(\left(x^4-16\right)=0\Leftrightarrow\left[\left(x^2\right)^2-4^2\right]=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+4\right)\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+4\ne0\right)=0\Leftrightarrow x=\pm2\)
\(x^2+4=0\Rightarrow x^2=-4\)mà \(x^2\ge0\forall x;-4< 0\)
TH2 : \(x^3-1=0\Leftrightarrow\left(x-1\right)\left(x^2+x+1\ne0\right)=0\Leftrightarrow x=1\)
TH3 : \(x+3=0\Leftrightarrow x=-3\)
Vậy tập nghiệm của phương trình là S = { 2 ; -2 ; 1 ; -3 }