Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. 1404 : [118 - (4x + 6)] = 27
118 - (4x + 6) = 52
4x + 6 = 66
4x = 60
x = 15
d) \(5x^2-3x=0\)
\(\Leftrightarrow x\left(5x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{5}\end{cases}}\)
e) \(3\left(x-1\right)+4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[3-4.\left(x-1\right)\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3-4\left(x-1\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\4\left(x-1\right)=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x-1=\frac{3}{4}\Rightarrow x=\frac{7}{4}\end{cases}}\)
f) \(2\left(x-2\right)^2=\left(x-2\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x-2=\frac{1}{2}\Rightarrow x=\frac{5}{2}\end{cases}}\)
g) \(\left(x-2020\right)^4=\left(x-2020\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2020\right)^2=0\\\left(x-2020\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=2019,x=2021\end{cases}}\)
2x+2x+1+2x+2+.....+2x+2020 = 22021 - 1
2x.(1+2+22+....+22020) = 2021 - 1
Đặt M = 1+2+22+...+22020
2M = 2+22+23+...+22021
2M - M = 22021-1
=> M = 22021 - 1
Thay vào, ta có:
2x.(22021 - 1) = 22021 - 1
=> 2x = 1
=> x = 0
x−42021+x−32020=x−22019+x−12018x−42021+x−32020=x−22019+x−12018
⇔ x−42021+x−32020−x−22019−x−12018=0x−42021+x−32020−x−22019−x−12018=0
⇔ (1+x−42021)+(1+x−32020)−(1+x−22019)−(1+x−12018)=0(1+x−42021)+(1+x−32020)−(1+x−22019)−(1+x−12018)=0⇔ x+20172021+x+20172020−x+20172019−x+20172018=0x+20172021+x+20172020−x+20172019−x+20172018=0
⇔ (x+2017)(12021+12020−12019−12018)=0(x+2017)(12021+12020−12019−12018)=0
⇔ x + 2017 = 0
⇔ x = -2017
\(\frac{x-1}{2020}+\frac{x-2}{2021}=\frac{x+1}{2018}+\frac{x+2}{2017}\)
\(\Leftrightarrow\frac{x-1}{2020}+1+\frac{x-2}{2021}-1=\frac{x+1}{2018}+1+\frac{x+2}{2017}+1\)
\(\Leftrightarrow\frac{x+2019}{2020}+\frac{x+2019}{2021}=\frac{x+2019}{2018}+\frac{x+2019}{2017}\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
mà \(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\ne0\)
\(\Leftrightarrow x+2019=0\)
\(\Leftrightarrow x=-2019\)
\(x_1+x_2=x_3+x_4=...=x_{2019}+x_{2020}=2\Rightarrow x_1+x_2+x_3+x_4+...+x_{2019}+x_{2020}=2.1010=2020\)
\(\Rightarrow x_1+x_2+x_3+x_4+...+x_{2019}+x_{2020}+x_{2021}=2020+x_{2021}\)
\(\Rightarrow0=2020+x_{2021}\)
\(\Rightarrow x_{2021}=-2020\)
Vậy \(x_{2021}=-2020\)
Sửa đề: \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{2020}{2021}\) \(Đkxđ:\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2020}{2021}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{2020}{2021}\)
\(\Leftrightarrow\frac{x+2}{2021}=1\)
\(\Leftrightarrow x=2019\)
Vậy \(x=2019\)
a) \(x\left(x+2021\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2021\end{cases}}\).
b) \(\left(x-2020\right)\left(x+2021\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2020=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-2021\end{cases}}\).
c) \(\left(x-2021\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2021=0\\x^2+1=0\end{cases}}\Leftrightarrow x=2021\).
d) \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Xét tổng: \(A=1+3+5+...+99\)
Số số hạng của dãy số là: \(\frac{99-1}{2}+1=50\).
Tổng của dãy là: \(A=\left(99+1\right)\times50\div2=2500\).
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
\(\Leftrightarrow50x+2500=0\)
\(\Leftrightarrow x=-50\).
\(2^x+2^{x+1}+2^{x+2}+\dots+2^{x+2021}=2^{2026}-16\\\Rightarrow 2^x\cdot(1+2+2^2+\dots+2^{2021})=2^4\cdot(2^{2022}-1)\text{ (1) }\)
Đặt \(A=1+2+2^2+\dots+2^{2021}\)
\(2A=2+2^2+2^3+\dots+2^{2022}\)
\(2A-A=\left(2+2^2+2^3+\dots+2^{2022}\right)-\left(1+2+2^2+\dots+2^{2021}\right)\)
\(A=2^{2022}-1\)
Thay \(A=2^{2022}-1\) vào (1), ta được:
\(2^x\cdot\left(2^{2022}-1\right)=2^4\cdot\left(2^{2022}-1\right)\)
\(\Rightarrow2^x=2^4\Rightarrow x=4\)
\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2021}=2^{2026}-16\)
Đặt A = 2x + 2x+1 + 2x+2 + ...+ 2x+2021
2A = 2x+1 + 2x+2 + ...+ 2x+2022
\(\Rightarrow\) 2A - A = (2x+1 + 2x+2 + ... + 2x+2022) - (2x + 2x+1 + ... + 2x+2021)
\(\Rightarrow\) A = 2x+2022 - 2x
\(\Rightarrow\) 2x+2022 - 2x = 22026 - 16
\(\Rightarrow\) 2x+2022 - 2x = 24+2022 - 24