K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

(x^3-9x^2+27x-27)+(x^2-6x+9)=0

(x-3)^3+(x-3)^2=0

(x-3)^2(x-2)=0

<=>x-3=0 hoặc x-2=0

<=>x=3 hoặc x=2

câu a) x=-3 nữa nha

1) Sửa đề: \(x^3-x^2+2=0\)

\(\Leftrightarrow x^3+x^2-2x^2-2x+2x+2=0\)

\(\Leftrightarrow x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+2\right)=0\)(1)

Ta có: \(x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+1\ge1\ne0\forall x\)(2)

Từ (1) và (2) suy ra \(x+1=0\)

hay x=-1

Vậy: x=-1

2) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-2x-10x+5=0\)

\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

3) Ta có: \(x^4+6x^2+8=0\)

\(\Leftrightarrow x^4+4x^2+2x^2+8=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)+2\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2+2\right)=0\)(3)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+4\ge4\ne0\forall x\)(4)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\ne0\forall x\)(5)

Từ (3), (4) và (5) suy ra phương trình \(x^4+6x^2+8=0\) vô nghiệm

Vậy: x∈∅

4) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3+5x^2-6x^2-30x+9x+45=0\)

\(\Leftrightarrow\left(x+5\right)\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

Vậy: x∈{-5;3}

25 tháng 10 2019

\(2x^2-6x=0\)

\(\Rightarrow2x.\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0:2\\x=0+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}.\)

\(2x.\left(x+2\right)-3.\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right).\left(2x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0-2\\2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{-2;\frac{3}{2}\right\}.\)

\(x^3-16x=0\)

\(\Rightarrow x.\left(x^2-16\right)=0\)

\(\Rightarrow x.\left(x^2-4^2\right)=0\)

\(\Rightarrow x.\left(x-4\right).\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0+4\\x=0-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Vậy \(x\in\left\{0;4;-4\right\}.\)

Chúc bạn học tốt!

14 tháng 8 2016

a) \(\left(y-1\right)^2=9\)

\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)

\(\Rightarrow x-1=3\Rightarrow x=4\)

\(\Rightarrow x-1=-3\Rightarrow x=-2\)

Vậy: \(x=4\) hoặc \(-2\)

14 tháng 8 2016

\(\left(x-4\right)^2-25=0\)

\(\Rightarrow\left(x-4\right)^2=25\)

\(\Rightarrow\left(x-4\right)^2=5^2=\left(-5\right)^2\)

\(\Rightarrow x-4=5\Rightarrow x=9\)

\(\Rightarrow x-4=-5\Rightarrow x=-1\)

Vậy: \(x=9\) hoặc \(-1\)

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

10 tháng 9 2017

a) x^3 - 6x^2 + 12x -8 = 0
x^3 - 3.x^2 .2 + 3.x.2^2 - 2^3 = 0
=> ( x-2) = 0
=> x-2=0 <=> x=2

10 tháng 9 2017

b) 8x^3 - 12x^2 + 6x -1 = 0
(2x)^3 - 3.(2x)^2.1 + 3.2x.1 -1^3 = 0
=> ( 2x - 1 ) = 0
=> 2x-1 = 0 <=> 2x = 1
x = 1/2